• Title/Summary/Keyword: Frontal faces processing

Search Result 7, Processing Time 0.027 seconds

Facial Features Extraction for Sasang Constitution Classification (사상채질 분류를 위한 안면부내 특징 요소 추출)

  • Bae, Na-Yeong;An, Taek-Won;Jo, Dong-Uk;Lee, Hwa-Seop
    • Journal of Sasang Constitutional Medicine
    • /
    • v.17 no.2
    • /
    • pp.46-51
    • /
    • 2005
  • 1. Objectives The purpose of this study is to objectify the diagnosis of Sasang Constitution. Using the methods of this study, it will improve to classificate Sasang Constitution. 2. Methods 1) Automatic feature extraction of human frontal faces for Sasang Constitution classification. 2) Color feature extraction of human frontal faces (1)Erosion filtering (skin-white, the other-black) (2) Median median 3. Results and Conclusions Observing a person's shape has been the major method for Sasang Constitution classification, which usually has been dependent upon doctor's intuition as of these days. We are developing an automatic system which provides objective basic data for Sasang Constitution classification. For this, in this paper, firstly, the signal processing techniques are applied to automatic feature extraction of human frontal faces for Sasang Constitution classification. The experiment is conducted to verify the effectiveness of the proposed system.

  • PDF

Eye Region Detection Method in Rotated Face using Global Orientation Information (전역적인 에지 오리엔테이션 정보를 이용한 기울어진 얼굴 영상에서의 눈 영역 추출)

  • Jang, Chang-Hyuk;Park, An-Jin;Kurata Takeshi;Jain Anil K.;Park, Se-Hyun;Kim, Eun-Yi;Yang, Jong-Yeol;Jung, Kee-Chul
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.11 no.4
    • /
    • pp.82-92
    • /
    • 2006
  • In the field of image recognition, research on face recognition has recently attracted a lot of attention. The most important step in face recognition is automatic eye detection researched as a prerequisite stage. Existing eye detection methods for focusing on the frontal face can be mainly classified into two categories: active infrared(IR)-based approaches and image-based approaches. This paper proposes an eye region detection method in non-frontal faces. The proposed method is based on the edge--based method that shows the fastest computation time. To extract eye region in non-frontal faces, the method uses edge orientationhistogram of the global region of faces. The problem caused by some noise and unfavorable ambient light is solved by using proportion of width and height for local information and relationship between components for global information in approximately extracted region. In experimental results, the proposed method improved precision rates, as solving 3 problems caused by edge information and achieves a detection accuracy of 83.5% and a computational time of 0.5sec per face image using 300 face images provided by The Weizmann Institute of Science.

  • PDF

Neural correlations of familiar and Unfamiliar face recognition by using Event Related fMRI

  • Kim, Jeong-Seok;Jeun, Sin-Soo;Kim, Bum-Soo;Choe, Bo-Young;Lee, Hyoung-Koo;Suh, Tae-Suk
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2003.09a
    • /
    • pp.78-78
    • /
    • 2003
  • Purpose: This event related fMRI study was to further our understanding about how different brain regions could contribute to effective access of specific information stored in long term memory. This experiment has allowed us to determine the brain regions involved in recognition of familiar faces among non familiar faces. Materials and Methods: Twelve right handed normal, healthy volunteer adults participated in face recognition experiment. The paradigm consists of two 40 familiar faces, 40 unfamiliar faces and control base with scrambled faces in a randomized order, with null events. Volunteers were instructed to press on one of two possible buttons of a response box to indicate whether a face was familiar or not. Incorrect answers were ignored. A 1.5T MRI system(GMENS) was employed to evaluate brain activity by using blood oxygen level dependent (BOLD) contrast. Gradient Echo EPI sequence with TR/TE= 2250/40 msec was used for 17 contiguous axial slices of 7mm thickness, covering the whole brain volume (240mm Field of view, 64 ${\times}$ 64 in plane resolution). The acquired data were applied to SPM99 for the processing such as realignment, normalization, smoothing, statistical ANOVA and statistical preference. Results/Disscusion: The comparison of familiar faces vs unfamiliar faces yielded significant activations in the medial temporal regions, the occipito temporal regions and in frontal regions. These results suggest that when volunteers are asked to recognize familiar faces among unfamiliar faces they tend to activate several regions frequently involved in face perception. The medial temporal regions are also activated for familiar and unfamiliar faces. This interesting result suggests a contribution of this structure in the attempt to match perceived faces with pre existing semantic representations stored in long term memory.

  • PDF

Hair Removal on Face Images using a Deep Neural Network (심층 신경망을 이용한 얼굴 영상에서의 헤어 영역 제거)

  • Lumentut, Jonathan Samuel;Lee, Jungwoo;Park, In Kyu
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2019.06a
    • /
    • pp.163-165
    • /
    • 2019
  • The task of image denoising is gaining popularity in the computer vision research field. Its main objective of restoring the sharp image from given noisy input is demanded in all image processing procedure. In this work, we treat the process of residual hair removal on faces images similar to the task of image denoising. In particular, our method removes the residual hair that presents on the frontal or profile face images and in-paints it with the relevant skin color. To achieve this objective, we employ a deep neural network that able to perform both tasks in one time. Furthermore, simple technic of residual hair color augmentation is introduced to increase the number of training data. This approach is beneficial for improving the robustness of the network. Finally, we show that the experimental results demonstrate the superiority of our network in both quantitative and qualitative performances.

  • PDF

A Face Recognition System using Geometric Image Processing (기하학적 영상처리를 이용한 얼굴인식 시스템)

  • 이항찬
    • Journal of Korea Multimedia Society
    • /
    • v.6 no.7
    • /
    • pp.1139-1148
    • /
    • 2003
  • Biometric system has been studied as an optimal solution for preventing or reducing the peculation or loss of ID. Nowadays, face recognition has been spot-lighted as a future biometric system because it is not forced to contact the part of human body with the specific input area of the system. However, there is some limitations to get the constant facial features because the size of face area is varied by the capturing distance or tilt of the face. In this paper, we can extract constant facial features within the predefined threshold using the simple geometric processing such as image scaling, transformation, and rotation for frontal face images. This face recognition system identifies faces with 92% of accuracy for the 400 images of 40 different people.

  • PDF

Frontal Face Region Extraction & Features Extraction for Ocular Inspection (망진을 위한 정면 얼굴 영역 및 특징 요소 추출)

  • Cho Dong-Uk;Kim Sun-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.6C
    • /
    • pp.585-592
    • /
    • 2005
  • One of the most important things in the researches on diseases is to attach more importance to prevention of a disease and preservation of health than to treatment of a disease, also to foods rather than to medicines. In this context, the most significant concern in examining a patient is to find the presence of disease, and, if any, to diaguose the type of disease, after which a pharmacotherapy is followed. In this paper, various diagnosis methods of Oriental medicines are discussed. And ocular inspection, the most important method among the 4 disease diagnoses of Oriental medicines, is studied. Observing a person's shape and color has been the major method for ocular inspection, which usually has been dependent upon doctor's intuition as of these days. We are developing an automatic system which provides objective basic data for ocular inspection. As the first stage, we applied the signal processing techniques to automatic feature extraction of faces for ocular inspection. Firstly, facial regions are extracted from the point of frontal view, which was followed by extraction of their features. The experiment applied to 20 persons showed that frontal face regions are perfectly extracted, as well as their features, such as eyes, eyebrows, noses and mouths. Future work will seek to address the issues of morphological operation for a few unfinished extraction results, such as combined hair and eyebrows.

Working Memory Mapping Analysis using fMRI (기능적 자기공명영상을 이용한 단기기억 뇌기능 매핑연구)

  • Juh Rahyeong;Choe Boyoung;Suh Taesuk
    • Progress in Medical Physics
    • /
    • v.16 no.1
    • /
    • pp.32-38
    • /
    • 2005
  • Impaired processing of facial information is one of the broad ranges of cognitive deficits seen in patients with schizophrenia. The purpose of this study was to elucidate the differences in brain activities involved in the process of facial working memory between schizophrenic patients and healthy comparison subjects. Ten patients with schizophrenia were recruited along with matched healthy volunteers as a comparison group. Functional magnetic resonance imaging (fMRI) was used to assess cortical activities during the performance of a 1-back working memory paradigm using images of neutral faces as mnemonic content. The patient group performed the tasks with reduced accuracy. Group analysis revealed that left fusiform gyrus, right superior frontal gyrus, bilateral middle frontal gyri/insula, left middle temporal gyrus, precuneus and vermis of cerebellum and showed decreased cortical activities in the patient group. On the other hand, an increased level of activation in lateral prefrontal cortex and parietal lobule was observed from the patient group, all in the right hemisphere. A decreased level of activity in the left fusiform gyrus among the patient group implicates inefficient processing of facial information. An increased level of activation in prefrontal and parietal neural networks from the patient group confirms earlier findings on the impaired working memory of patients with schizophrenia.

  • PDF