• Title/Summary/Keyword: Frontal crashworthiness

Search Result 24, Processing Time 0.023 seconds

A Study on Car-to-car Frontal Impact Considering the Vehicle Compatibility (상호안전성을 고려한 차대차 정면 충돌 안전성 선행 연구)

  • Lee, Chang min;Shin, Jang ho;Kim, Hyun woo;Park, Kun ho;Park, Young joon
    • Journal of Auto-vehicle Safety Association
    • /
    • v.9 no.1
    • /
    • pp.13-18
    • /
    • 2017
  • In recent years, NCAP regulations of many countries have induced automaker to improve the vehicle crashworthiness. But, the current NCAP regulations don't cover all types of traffic accidents. And rapid-increasing market share of compact cars and SUVs has brought for both consumer and automaker to pay more attention on crash compatibility. So, many countries have tried to develop the new crash test mode and update the present crash test mode. Especially, Euro NCAP has been developing a new impact protocol of the car-to-car frontal offset impact including the crash compatibility assessment. There are plans to introduce this new protocol in 2020, and it will be replaced the current Euro NCAP frontal offset impact. The test dummy in the front seats of this new test mode will be changed from 50% Hybrid-III male to 50% THOR male. This paper will address the vehicle responses, the occupant responses and the vehicle compatibility performance from a full vehicle crash test using the new car-to-car frontal offset test protocol of Euro NCAP.

C]RASH ANALYSIS OF AUTO-BODY STRUCTURES CONSIDERING THE STRAIN-RATE HARDENING EFFECT

  • Kang, W.J.;Huh, H.
    • International Journal of Automotive Technology
    • /
    • v.1 no.1
    • /
    • pp.35-41
    • /
    • 2000
  • The crashworthiness of vehicles with finite element methods depends on the geometry modeling and the material properties. The vehicle body structures are generally composed of various members such as frames, stamped panels and deep-drawn parts from sheet metals. In order to ensure the impact characteristics of auto-body structures, the dynamic behavior of sheet metals must be examined to provide the appropriate constitutive relation. In this paper, high strain-rate tensile tests have been carried out with a tension type split Hopkinson bar apparatus specially designed for sheet metals. Experimental results from both static and dynamic tests with the tension split Hopkinson bar apparatus are interpolated to construct the Johnson-Cook and a modified Johnson-Cook equation as the constitutive relation, that should be applied to simulation of the dynamic behavior of auto-body structures. Simulation of auto-body structures has been carried out with an elasto-plastic finite element method with explicit time integration. The stress integration scheme with the plastic predictor-elastic corrector method is adopted in order to accurately keep track of the stress-strain relation for the rate-dependent model accurately. The crashworthiness of the structure with quasi-static constitutive relation is compared to the one with the rate-dependent constitutive model. Numerical simulation has been carried out for frontal frames and a hood of an automobile. Deformed shapes and the Impact energy absorption of the structure are investigated with the variation of the strain rate.

  • PDF

A Study on the Development of Test Rig for High Speed Frontal Crash and Test of Members ($\textrm{I}$) (고속충돌시험기 개발 및 부재의 충돌특성 실험에 관한 연구 (I))

  • 강신유;장인배;김헌영;정규진;박경환
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.6
    • /
    • pp.119-126
    • /
    • 2000
  • In this paper. a simple high-speed crash test rig for members of vehicle was developed for the improvement of crashworthiness of vehicle's side rail. The cart hanging the specimen is accelerated up to 35 mph by the force of freely dropping weight and 1:3 accelerating pulleys. The cart with shock absorbers travels on the rail roads, so it does not transfer any additional vibration to the specimen. To measure the test results, two types of accelerator are considered. the one is a strain gage type and the other is a piezo type. The test rig is rated good to test the specimen like a side rail of vehicle as developing the vehicle's structures in the early design stage.

  • PDF

A modeling example of occupant analysis for crashworthiness in a passenger car (승용차 충돌시 승객해석을 위한 모델링의 예)

  • 신문균;박경진;김형중;정근섭
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.14 no.2
    • /
    • pp.88-98
    • /
    • 1992
  • Real automobiles have been utilized to study the occupant behaviors and the response of the structures in the crash environment. Since various parameters are involved in the automobile crashworthiness, a number of experiments must be conducted. The experiments have been contributed to increasing the cost due to the fact that the test is quite expensive. Therefore, computer simulation is adopted to reduce the number of experiments. A few computer programs have been developed specifically to solve the occupant responses in the crash environment. In this research, a software is used to study the occupant dynamic analysis. A modeling of occupant analysis is established for a passenger car and the results are verified through comparisons with real experiments. In the modeling, data are tuned very carefully so that simulated results such as HIC(Head Injury Criterion) and acceleration of each body may approximate to the experimental results. The compared experiment is a barrier test which is carried out by frontal impact. A feedback to the design process is suggested from the result of this research.

  • PDF

A Study on the Development of Test Rig for High Speed Frontal Crash and Test of Members

  • Shin-You. Kang;In-Bae. Chang;Jang, Hye-Jeong
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.3 no.3
    • /
    • pp.21-27
    • /
    • 2002
  • In this paper, a simple test rig of high-speed crash for the front members of vehicles was developed for the improvement of crashworthiness of vehicle's side rail. The cart hanging the specimen is accelerated up to 35 mph by the traction wire and by the force of freely dropping weight and 1:3 accelerating pulleys. The cart with shock absorbers travels on the rail roads, so it does not transfer any additional vibration to the specimen. In order to measure the energy absorbed by the specimen when it collapse to the wall and during it deform, the two strain gage type load cells are used at the wall place. The test rig rated good to test the specimen like a side rail of vehicle as developing the vehicle's structures in the early design stage.

DYNAMIC MODELING AND ANALYSIS OF VEHICLE SMART STRUCTURES FOR FRONTAL COLLISION IMPROVEMENT

  • Elemarakbi, A.M.;Zu, J.W.
    • International Journal of Automotive Technology
    • /
    • v.5 no.4
    • /
    • pp.247-255
    • /
    • 2004
  • The majority of real world frontal collisions involves partial overlap (offset) collision, in which only one of the two longitudinal members is used for energy absorption. This leads to dangerous intrusions of the passenger compartment. Excessive intrusion is usually generated on the impacted side causing higher contact injury risk on the occupants compared with full frontal collision. The ideal structure needs to have extendable length when the front-end structure is not capable to absorb crash energy without violating deceleration pulse requirements. A smart structure has been proposed to meet this ideal requirement. The proposed front-end structure consists of two hydraulic cylinders integrated with the front-end longitudinal members of standard vehicles. The work carried out in this paper includes developing and analyzing mathematical models of two different cases representing vehicle-to-vehicle and vehicle-to-barrier in full and offset collisions. By numerical crash simulations, this idea has been evaluated and optimized. It is proven form numerical simulations that the smart structures bring significantly lower intrusions and decelerations. In addition, it is shown that the mathematical models are valid, flexible, and can be used in an effective way to give a quick insight of real life crashes.

Development of a Finite Element Model for Frontal Crash Analysis of a Mid-Size Truck (중형 트럭의 정면 충돌 특성해석을 위한 유한요소 모델의 개발)

  • 홍창섭;오재윤;이대창
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.4
    • /
    • pp.226-232
    • /
    • 2000
  • This paper develops a finite element model for studying the crashworthiness analysis of a mid-size truck. A simulation for a truck frontal crash to a rigid barrier using the model is performed with PAM-CRASH installed in super computer SP2. Full vehicle model is composed of 86467 shell elements, 165 beam elements and 98 bar elements, and 86769 nodes. The model uses four material model such as elastic, elastic-plastic(steel), rigid and elastic-plastic(rubber) material model which are in PAM-CRASH. Frame and suspension system are modeled with 28774 shell elements and 31412 nodes. Cab is modeled with 34680 shell elements and 57 beam elements, and 36254 nodes. Bumper is modeled with 2262 shell elements, and 2508 nodes. Axle, steering shaft, etc are modeled using beam or bar elements. Mounting parts are modeled using rigid bodies. Bodies are interconnected using nodal constrains or joint options. To verify the developed model, frontal crash test with 30mph velocity to a rigid barrier is carried out. In the crash test, vehicle pulse at lower part of b-pillar is measured, and deformed shapes of frame and driver seat area are photographed. Those measured vehicle pulse and photographed pictures are compared those from the simulation to verify the developed finite element model.

  • PDF

SIZE OPTIMIATION OF AN ENGINE ROOM MEMBER FOR CRASHWORTHINESS USING RESPONSE SURFACE METHOD

  • Oh, S.;Ye, B.W.;Sin, H.C.
    • International Journal of Automotive Technology
    • /
    • v.8 no.1
    • /
    • pp.93-102
    • /
    • 2007
  • The frontal crash optimization of an engine room member using the response surface method was studied. The engine room member is composed of the front side member and the sub-frame. The thicknesses of the panels on the front side member and the sub-frame were selected as the design variables. The purpose of the optimization was to reduce the weight of the structure, under the constraint that the objective quantity of crash energy is absorbed. The response surface method was used to approximate the crash behavior in mathematical form for optimization procedure. To research the effect of the regression method, two different methodologies were used in constructing the response surface model, the least square method and the moving least square method. The optimum with the two methods was verified by the simulation result. The precision of the surrogate model affected the optimal design. The moving least square method showed better approximation than the least square method. In addition to the deterministic optimization, the reliability-based design optimization using the response surface method was executed to examine the effect of uncertainties in design variables. The requirement for reliability made the optimal structure be heavier than the result of the deterministic optimization. Compared with the deterministic optimum, the optimal design using the reliability-based design optimization showed higher crash energy absorption and little probability of failure in achieving the objective.

Optimization of Seat belt Load Limiter for Crashworthiness (안전벨트 충돌하중특성 최적화)

  • Seo, bo pil;Choi, sung chul;Kim, beom jung;Han, sung jun
    • Journal of Auto-vehicle Safety Association
    • /
    • v.3 no.2
    • /
    • pp.5-10
    • /
    • 2011
  • Under the full frontal crash event, seatbelt system is the most typical and primary restraint device that prevents the second impact between an occupant and vehicle interior parts by limiting the forward motion of an occupant in the vehicle occupant packaging space. Today's restraint systems typically include the three-point seat belt with the pretensioner and the load limiter. A pretensioner preemptively tightens the seat belts removing any slack between a passenger and belt webbing which leads to early restraint of a passenger. After that a load limiter controls level of belt load by releasing the belt webbing to reduce occupant injurys. In this study, load characteristics of load limiters are optimized by the computer simulation with a MADYMO model for a frontal impact against the rigid wall at 56kph and then we suggest performance requirements. We derived optimum load characteristic from the results using four vehicle simulation models represented by the vehicle. Based on the results, we suggest the performance from the results of the second optimization using the simulation considering the design and the standardization. Finally, the performance requirements is verified by the sled tests including the load limiter device for the full vehicle condition.

A study of rear seat belts geometric characteristics for rear seated occupants protections (뒷좌석 승객 보호를 위한 안전띠의 기하학적 특성에 대한 연구)

  • Youn, Younghan;Park, Jiyang;Lee, Seungsang;Kim, Minyoung
    • Journal of Auto-vehicle Safety Association
    • /
    • v.7 no.1
    • /
    • pp.45-50
    • /
    • 2015
  • The protection of frontal seat passengers in both driver and front seated occupant has been more focused from the auto industries as well as regulatory bodies more than 40 years. Recently, their interests have been extended to rear seat occupants especially children and female occupants. However, the current available safety devices for the rear seat occupants are seat belt only. According to the previous researchers, the injury level of the rear seat passengers tend to be higher than the injury level of the frontal seat passengers. In this study, the optimal location of seat belts anchorages to enhance rear passengers crashworthiness are studied. FEM models are designed in accordance with regulation of KMVSS102, UN R44, UN R16, and UN R14. and three point belts are fitted on the HybridIII 5th percentile dummy and HybridIII 50th percentile dummy. The combined injury value used HIC15, Nij, Chest deflection, Femur force are used to evaluate rear seat belt anchorage optimal locations.