• 제목/요약/키워드: Front Side Member Part

검색결과 8건 처리시간 0.02초

1.5GPa급 Front Side Rear Lower Member 냉간 성형공정 설계기법 연구 (Study on the Cold Stamping Process Design Method of 1.5GPa Grade Front Side Rear Lower Member)

  • 남성우;배기현
    • 소성∙가공
    • /
    • 제30권5호
    • /
    • pp.236-241
    • /
    • 2021
  • This study describes the cold stamping process design procedure to secure the formability and dimensional accuracy of the automotive structural component fabricated by 1.5GPa grade ultra-high strength steel sheet. The target product is selected as the front side rear lower member which is the most important energy absorption part in the frontal impact condition. To secure the product quality, an intermediate product shape is added while considering the low elongation and high strength characteristics of 1470Mart. The sequential optimization procedure of the intermediate product shape, the fine dimensional quality is then achieved without any crack or wrinkling. The cold stamping method with ultra-high strength steel sheets is validated by conducting the die tryout of the front side rear lower member.

980MPa급 초고장력 강판의 자동차 프런트 사이드 멤버 부품 성형에 관한 연구 (A Study on the Forming of Automotive Front Side Member Part with Ultra High Strength Steel of DP980)

  • 차승훈;이상곤;고대철;김병민
    • 소성∙가공
    • /
    • 제18권1호
    • /
    • pp.39-44
    • /
    • 2009
  • This paper is concerned with forming technology of an automotive front side member part with ultra high strength steel sheet of DP980. The forming technology considered in this paper is the draw & form type, which installs the upper pad and lower pad to produce the complicated shape of ultra high strength steel sheet. In order to produce sound product, comparison between form type and draw & form type and between draw type and draw & form type are investigated by FE-analysis. FE-analysis is carried out with commercial sheet metal forming analysis S/W, DYNAFORM. It was shown from FE-analysis that the draw & form type satisfied the required specifications such as the dimensional accuracy and soundness of automotive front side member part. The effectiveness of the analytical result was verified by the experiment. From this investigation, the draw & form type is proved to be able to supply useful forming technology in forming ultra high strength steel.

프론트 사이드 멤버의 비틀림 저감을 위한 성형공정 설계 (Forming process design for the twist reduction of an automotive front side member)

  • 인정제
    • 한국기계기술학회지
    • /
    • 제13권1호
    • /
    • pp.105-112
    • /
    • 2011
  • Increasing needs for light weight and high safety in modern automobiles induced the wide application of high strength steels in automotive body structures- The main difficulty in the forming of sheet metal parts with high strength steel is the large amount of springback including sidewall curl and twist in channel shaped member parts- Among these shape defects, twist occurs frequently and requires numerous reworks on the dies to compensate the shape deviation- But until now, it seems to be no effective method to reduce the twist in the forming processes- In this study, a new forming process to reduce the twist deformation during the forming of automotive structural member was suggested- This method consists of forming and restriking of embosses on the sidewall around the stretch flanging area of the part- and was applied in the forming process design of an automotive front side inner member with high strength steel- To evaluate the effectiveness of the method, springback analysis using $Pamstampa^{tm}$ was done- Through the analysis results, the suggested method was proven to be effective in twist reduction of channel shaped parts with stretch flanging area.

승용차 프론트 사이드 조립체의 역설계적 유한요소 충돌해석 (Crash FE Analysis of Front Side Assembly for Reverse Engineering)

  • 김용우;김정호;정경신
    • 한국자동차공학회논문집
    • /
    • 제15권1호
    • /
    • pp.89-98
    • /
    • 2007
  • Crashworthiness design is of special interest in automotive industry and in the transportation safety field to ensure the vehicle structural integrity and more importantly the occupant safety in the event of the crash. Front side assembly is one of the most important energy absorbing components in relating to the crashworthiness design of vehicle. The structure and shape of the front side assemblies are different depending on automakers. Thus, it is not easy to grab an insight on designer's intention when you glance at a new front side member without experiences. In this paper, we have performed the explicit nonlinear dynamic finite element analysis on the front side assembly of a passenger car to identify the mechanical roles of each part of the assembly and to enhance the absorbing energy from the viewpoint of reverse engineering.

강성 배분비를 괴려한 고강성 경량화 차체 설계 (Design of high stiffness and lightweight body for stiffness distribution ratio)

  • 양희종;김기창;임홍재;김찬묵
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 추계학술대회논문집
    • /
    • pp.562-566
    • /
    • 2006
  • Lightweight body can cause a low stiffness due to the decrease of panel thickness and reinforcing member. The other way, high stiffness body demands an increase of mass. Front pillar section area is decreased due to driver's visual field. Global vehicle stiffness is affected by stiffness distribution ratio between upper part and lower part at side body structure. This paper will describe a process used to evaluate the stiffness distribution ratio based on research of strain energy analysis of the tip rotation method. In addition, optimum design schemes are presented for high stiffness and lightweight body structure considering the investigated stiffness distribution ratio. In this way the designer will be aided by a defined design guide and a set of supporting tool to help him work towards a good design

  • PDF

강성 배분비를 고려한 고강성화 경량화 차체 설계 (Design of High Stiffness and Lightweight Body for Stiffness Distribution Ratio)

  • 양희종;김기창;임시형;김찬묵;임홍재
    • 한국소음진동공학회논문집
    • /
    • 제17권10호
    • /
    • pp.901-906
    • /
    • 2007
  • Lightweight body due to the decrease of panel thickness and reinforcing member might cause low stiffness. On the other hand, high stiffness body requires an increase of mass. Front pillar section area has been decreased for increasing the driver's visual field. Global vehicle stiffness is affected by stiffness distribution ratio between upper part and lower part at a side body structure. This paper describes a process used to evaluate the stiffness distribution ratio based on strain energy. In addition, optimum design schemes are presented for high stiffness and lightweight body structure considering the investigated stiffness distribution ratio.

해석적인 방법을 이용한 복잡한 형상의 자동차 부재 스탬핑 공정에서의 주요 설계인자 연구 (Study on Design Parameters in a Stamping Process of an Automotive Member with the Simulation-based Approach)

  • 송정한;김세호;김승호;허훈
    • 소성∙가공
    • /
    • 제14권1호
    • /
    • pp.21-28
    • /
    • 2005
  • This paper is concerned with the quantitative effect of design parameters on a stamped part of the auto-body. The considered parameters in this paper are the blank holding force, the draw-bead force, the blank size which greatly affect the metal flow during stamping. The indicators of formability selected in this paper are failures such as tearing, wrinkling and the amount of springback. The stamping process of the front side inner member is simulated using the finite element analysis changing the design parameters. The numerical results demonstrate that the blank holding force cannot control the local metal flow during forming although it controls the overall metal flow. The modification of the initial blank size considering the punch opening line ensures the local wrinkling and reduces the amount of springback after forming. The restraining force of draw-bead controls the metal flow in the local area and reduces the amount of excess metal. It is noted that the parametric study of design parameters such as blank holding force, the blank size and the draw-bead are very important in the process design of the complicated member.

조선시대 민가 오량가(五樑架) 종단구성의 규모와 부재치수에 관한 연구 (A Study on the Scale and Dimensions of member of Sectional structure for Five-Purlin Houses from Joseon Era)

  • 김재웅
    • 건축역사연구
    • /
    • 제28권1호
    • /
    • pp.7-16
    • /
    • 2019
  • As a part of the research on existing structures of private homes from Joseon Era. Focusing on one hundred twenty five-purlin houses, the current study investigated the features and characteristics of the house structure from style, size, proportion and roof pitch, and measurements of key parts, and developed the following conclusions. Most are single-houses (89, 83%), and among them, there are 47 single front-terrace houses (39%), which is the highest number. The sizes of lower house structure do not differ greatly depending on the vertical structure, and single rear terrace house and double-house have relatively larger side sizes. The size of upper structure is larger in double-houses compared to other vertical structures, indicating a relatively higher roof. The cross-section measurement of major parts show that double-houses are larger than single-houses by 3cm in pillar, 3-4.5cm in crossbeam length, and 4.5cm in crossbeam width. However, Janghyeo width was consistent at 7.5 to 10.5cm, maintaining uniformity regardless of vertical structure of the houses. In addition, the cross-section measurements decreased from sixteenth to nineteenth century, with the size of pillar size decreasing the most. The result that the Janghyeo width is not related to the house structure house confirmed that the Janghyeo width was kept consistent regardless of the size of the house structure.