• Title/Summary/Keyword: Frictional force-distance curve

Search Result 3, Processing Time 0.017 seconds

Lab-based Simulation of Carton Clamp Truck Handling - Frictional Characteristics between Corrugated Packages

  • Park, Jong Min;Choi, Sang Il;Kim, Jong Soon;Jung, Hyun Mo
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.25 no.3
    • /
    • pp.131-137
    • /
    • 2019
  • Carton clamps, one of forklift attachments, allow users to quickly handle shipping units such as unitized loads, large shipping cases, or crates without the requirement of pallets. As the use of palletless handling by clamp trucks increases, so does the need for simulation research on clamp truck handling. The frictional characteristics for various contact conditions of corrugated paperboards and their constituent boards were analyzed to obtain the data needed in the computer simulation for the handling of carton clamp truck. The overall mean of static-frictional coefficients between selected corrugated paperboards was 0.38 (±0.01), which was 1.3~1.6 times greater than 0.23~0.29 of the frictional coefficients between boards. The overall mean of static-frictional coefficients between the corrugated paperboards and the rubber contact pad was 0.82 (±0.02), which was about 1.1 to 2.8 times greater than 0.29~0.78 of the static-frictional coefficient between the linerboard and the rubber contact pad. The overall mean of kinetic-frictional coefficients between the corrugated paperboards was 0.35 (±0.01), and 0.76 (±0.02) between the corrugated paperboards and the rubber contact pad.

Influence of Lithiation on Nanomechanical Properties of Silicon Nanowires Probed with Atomic Force Microscopy

  • Lee, Hyun-Soo;Shin, Weon-Ho;Kwon, Sang-Ku;Choi, Jang-Wook;Park, Jeong-Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.110-110
    • /
    • 2011
  • The nanomechanical properties of fully lithiated and unlithiated silicon nanowire deposited on silicon substrate have been studied with atomic force microscopy. Silicon nanowires were synthesized using the vapor-liquid-solid process on stainless steel substrates using Au catalyst. Fully lithiated silicon nanowires were obtained by using the electrochemical method, followed by drop-casting on the silicon substrate. The roughness, derived from a line profile of the surface measured in contact mode atomic force microscopy, has a smaller value for lithiated silicon nanowire and a higher value for unlithiated silicon nanowire. Force spectroscopy was utilitzed to study the influence of lithiation on the tip-surface adhesion force. Lithiated silicon nanowire revealed a smaller value than that of the Si nanowire substrate by a factor of two, while the adhesion force of the silicon nanowire is similar to that of the silicon substrate. The Young's modulus obtained from the force-distance curve, also shows that the unlithiated silicon nanowire has a relatively higher value than lithiated silicon nanowire due to the elastically soft amorphous structures. The frictional forces acting on the tip sliding on the surface of lithiated and unlithiated silicon nanowire were obtained within the range of 0.5-4.0 Hz and 0.01-200 nN for velocity and load dependency, respectively. We explain the trend of adhesion and modulus in light of the materials properties of silicon and lithiated silicon. The results suggest a useful method for chemical identification of the lithiated region during the charging and discharging process.

  • PDF

Nanomechanical Properties of Lithiated Silicon Nanowires Probed with Atomic Force Microscopy (원자힘 현미경으로 측정된 리튬화 실리콘 나노선의 나노기계적 성질)

  • Lee, Hyun-Soo;Shin, Weon-Ho;Kwon, Sang-Ku;Choi, Jang-Wook;Park, Jeong-Young
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.6
    • /
    • pp.395-402
    • /
    • 2011
  • The nanomechanical properties of fully lithiated and unlithiated silicon nanowire deposited on silicon substrate have been studied with atomic force microscopy. Silicon nanowires were synthesized using the vapor-liquid-solid process on stainless steel substrates using Au catalyst. Fully lithiated silicon nanowires were obtained by using the electrochemical method, followed by drop-casting on the silicon substrate. The roughness, derived from a line profile of the surface measured in contact mode atomic force microscopy, has a smaller value ($0.65{\pm}0.05$ nm) for lithiated silicon nanowire and a higher value ($1.72{\pm}0.16$ nm) for unlithiated silicon nanowire. Force spectroscopy was utilitzed to study the influence of lithiation on the tip-surface adhesion force. Lithiated silicon nanowire revealed a smaller value (~15 nN) than that of the Si nanowire substrate (~60 nN) by a factor of two, while the adhesion force of the silicon nanowire is similar to that of the silicon substrate. The elastic local spring constants obtained from the force-distance curve, also shows that the unlithiated silicon nanowire has a relatively smaller value (16.98 N/m) than lithiated silicon nanowire (66.30 N/m) due to the elastically soft amorphous structures. The frictional forces of lithiated and unlithiated silicon nanowire were obtained within the range of 0.5-4.0 Hz and 0.01-200 nN for velocity and load dependency, respectively. We explain the trend of adhesion and modulus in light of the materials properties of silicon and lithiated silicon. The results suggest a useful method for chemical identification of the lithiated region during the charging and discharging process.