• Title/Summary/Keyword: Frictional Velocity

Search Result 178, Processing Time 0.022 seconds

Pressure Drop in Two-Phase Flow Boiling of R134a, R123 and Their Mixture in Horizontal Tube

  • Lim, Tae-Woo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.12 no.2
    • /
    • pp.70-78
    • /
    • 2004
  • An experimental study on the pressure drop during flow boiling for pure refrigerants Rl34a and R123, and their mixture was carried out in a uniformly heated horizontal tube. Tests were run at a pressure of 0.6㎫ and in the ranges of heat flux 5-50㎾/$m^2$, vapor quality 0-100 percent and mass velocity of 150-600 kg/$m^2$s. Generally, the two-phase frictional multiplier is used to predict the frictional pressure drop during the two-phase flow boiling. The obtained results have been compared to the existing various correlations for the two-phase multiplier. Also, the frictional pressure drop was compared to a few available correlations; The Lockhart-Martinelli correlation considerally overpredicted the frictional pressure drop data for mixture as well as pure components in the entire mass velocity ranges employed in the present study, while the Chisholm correlation underpredicted the present data. The Friedel correlation was found to satisfactorily correlate the frictional pressure drop data except for a low quality region.

A Study on Pressure Drop Characteristics of Refrigerant in Heat Exchanger for Automobile (자동차용 열교환기 냉매의 압력 강하 특성에 관한 연구)

  • 임태우;박종운
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.2
    • /
    • pp.119-125
    • /
    • 2003
  • An experiment study on pressure drop was carried out for both an adiabatic and a diabatic two-phase flow with pure refrigerants R134a and Rl23 and their mixtures as test fluids in a uniformly heated horizontal tube. The frictional pressure drop during flow boiling is predicted by using two models; the homogeneous model that assumes equal phase velocity and the separate flow model that allows a slip velocity between two phases. The measured frictional pressure drop was compared to a few available correlations. Homogeneous model considerally underpredicted the present data for mixture as well as pure component in the entire mass velocity ranges employed in the present study, while Friedel correlation was found to satisfactorily correlate the frictional pressure drop data as compared to other correlation.

Flow Characteristics of Vertical Upward Gas-Liquid Two-Phase Flow (수직상향 기액이상류의 유동특성)

  • Choi Bu-Hong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.4
    • /
    • pp.377-383
    • /
    • 2005
  • This paper deals with the flow characteristics of air-water two-phase flow in a vertical tube of 10mm I.D. and 600mm in length at an adiabatic condition. The obtained experimental data were covered with the liquid superficial velocity ranging from 0.095m/s to 2.56m/s. and the gas superficial velocity ranging from 0.032m/s to 21.08m/s. The effects of the gas and liquid superficial velocity on the flow pattern transitions, frictional pressure drop, and film thickness and gas-liquid interface roughness were also examined. It was found that the film thickness increased and the liquid film wave length was more longer with the liquid superficial velocity $j_L$ increasing at $j_G$ constant. It was also showed that the frictional pressure drops were experienced in three regions. namely increasing region(bubbly flow), decreasing region (Taylor bubble and slug flows) and re-increasing region (annular flow).

Braking Distance Estimation using Frictional Energy Rate (마찰에너지율을 이용한 타이어 제동거리 예측)

  • Jeon, Do-Hyung;Choi, Joo-Hyung;Cho, Jin-Rae;Kim, Gi-Jeon;Woo, Jong-Shik
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.519-524
    • /
    • 2004
  • This study is concerned with the braking distance estimation using frictional energy rate. First, steady state rolling analysis is performed, and using this result, the braking distance is estimated. Dynamic rolling analysis during entire braking time period is impratical, so that this study divides the vehicle velocity by 10km/h to reduce the analysis time. The multiplication of the slip rate and the shear stress provides the frictional energy rate. Using frictional energy rate, total braking distance is estimated, In addition, ABS(Anti-lock Brake System) is considered, and two type of slip ratios are compared, One is 15% slip ratio for the ABS condition, and the other is 100% slip ratio which leads lo the almost same braking distance as the elementary kinematic theory. A slip ratio is controlled by angular velocity in ABAQUS/Explicit, A 15% slip ratio gives the real vehicle's braking distance when the frictional energy occurred al disk pad is included. Disk pad's frictional energy rate is calculated by the theoretical approach.

  • PDF

A Study on Pressure Drop in Two-Phase Flow Boiling of Refrigerants in Horizontal Tube (수평 전열관내 냉매의 이상유동 압력강하에 관한 연구)

  • 임태우;김준효
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.6
    • /
    • pp.510-517
    • /
    • 2003
  • An experimental study on the pressure drop during flow boiling for pure refrigerants R134a and Rl23, and their mixture was carried out in a uniformly heated horizontal tube. Tests were run at a pressure of 0.6 MPa and in the ranges of heat flux 5~50 kW/m$^2$, vapor quality 0~100 percent and mass velocity of 150~600 kg/m$^2$s. Generally, the two-phase frictional multiplier is used to predict the frictional pressure drop during the two-phase flow boiling. The obtained results have been compared to the existing various correlations for the two-phase multiplier. Also, the frictional pressure drop was compared to a few available correlations; The Lockhart-Martinelli correlation considerally overpredicted the frictional pressure drop data for mixture as well as pure components in the entire mass velocity ranges employed in the present study, while the Chisholm correlation underpredicted the present data. The Friedel correlation was found to satisfactorily correlate the frictional pressure drop data except for a low quality region.

Propagation Characteristics of a Surface Crack on a Semi-Infinite Body Due to Frictional Heating (마찰열에 의한 반무한체 표면균열의 전파특성)

  • Park, Jun-Ho;Park, Eun-Ho;Kim, Chae-Ho;Kim, Seock-Sam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.10
    • /
    • pp.3126-3134
    • /
    • 1996
  • In this paper, to examine the propagation of inclined surface crack due to frictional heating, analytic model is considered as the semi-infinite elastic body subjected to the thermo-mechanical loading of an asperity moving with a high speed. Considering the moving of frictional heat source and convection on a semi-infinite surface having inclined crack, theoretical analysis was carried out to estimate the propagation characteristics of thermo-mechanical crack. Numerical results showed that stress intensity factor $K_\prod/P_0\sqrt{c}$ is increasing with increasing velocity and frictional coefficient, inclined degree, decreasing crack length and the maximum value of it is positioned at the trailing edge. So it is shown that the propagation probability of surface crack is high at the trailing edge of contact area as increasing velocity and frictional coefficient, inclined degree, as decreasing crack length.

Forward Velocity Estimation Algorithm for Planar Mobile Robots

  • Lee, Seung-Eun;Kim, Wheekuk;Yi, Byung-Ju;You, Bum-Jae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.51.5-51
    • /
    • 2001
  • The sliding and/or skidding motions generally occur to a car - like planar mobile robot consisting of four conventional fixed wheels attached on two parallel axles. Thus, the kinematic model of such mobile robot should include the description of skidding and sliding frictional motions. However, most of previous kinematic models do not take these frictional motions into account the kinematic model, as the work done by Muir and Newman [1]. Thus, does it result in least square solution in estimating sensed forward velocity. In this paper, the sensed forward velocity estimation algorithm for mobile robots is proposed, which not only includes those skidding and sliding frictional motions into kinematic model but also utilizes only the minimal set of dependent internal kinematic variables of the mobile robot. Then, ...

  • PDF

A Study on Pressure Drop Characteristics of Refrigerants in Horizontal Flow Boiling

  • Lim, Tae-Woo;Han, Kyu-Il
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.5
    • /
    • pp.758-765
    • /
    • 2003
  • An experimental investigation on the flow pattern and pressure drop was carried out for both an adiabatic and a diabatic two-phase flow in a horizontal tube with pure refrigerants R134a and R123 and their mixtures as test fluids. The observed flow patterns were compared to the flow pattern map of Kattan et al., which predicted well the present data over the entire regions of mass velocity in this study. The measured frictional pressure drop in the adiabatic experiments increased with an increase in vapor quality and mass velocity These data were compared to various correlations proposed in the past for the frictional pressure drop. The Chisholm correlation underpredicted the present data both for pure fluids and their mixtures in the entire mass velocity range of 150 to 600 kg/m$^2$s covered in the measurements, white the Friedel correlation was found to overpredict the present data in the stratified and stratified-wavy flow region, and to underpredict in the annular flow region.

Comprehensive Consideration on the Discharge of Gases from Pressurized Vessels through Pressure Relief Devices (압력용기로부터 압력방출장치를 통한 가스 방출에 관한 포괄적 고찰)

  • Chung, Chang-Bock
    • Journal of the Korean Society of Safety
    • /
    • v.35 no.6
    • /
    • pp.32-45
    • /
    • 2020
  • The problem of determining the discharge rates of gases from pressurized vessels through pressure relief devices was dealt with comprehensively. First, starting from basic fluid flow equations, detailed modeling procedures were presented for isentropic nozzle flows and frictional flows in a pipe, respectively. Meanwhile, physical explanations were given to choking phenomena in terms of the acoustic velocity, elucidating the widespread use of Mach numbers in gas flow models. Frictional flows in a pipe were classified into adiabatic, isothermal, and general flows according to the heat transfer situation around the pipe, but the adiabatic flow model was recommended suitable for gas discharge through pressure relief devices. Next, for the isentropic nozzle flow followed by adiabatic frictional flow in the pipe, two equations were established for two unknowns that consist of the Mach numbers at the inlet and outlet of the pipe, respectively. The relationship among the ratio of downstream reservoir pressure to upstream pressure, mass flux, and total frictional loss coefficient was shown in various forms of MATLAB 2-D plot, 3-D surface plot and contour plot. Then, the profiles of gas properties and velocity in the pipe section were traced. A method to quantify the relationship among the pressure head, velocity head, and total friction loss was presented, and was used in inferring that the rapid increase in gas velocity in the region approaching the choked flow at the pipe outlet is attributed to the conversion of internal energy to kinetic energy. Finally, the Levenspiel chart reproduced in this work was compared with the Lapple chart used in API 521 Standatd.

A study on the three-dimensional upsetting of non-prismatic blocks considering different frictional conditions at two flat dies (상하면의 마찰이 틀린 비직각주 소재의 3차원 업셋팅에 관한 연구)

  • 김종호;류민형;양동열
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.3
    • /
    • pp.345-352
    • /
    • 1989
  • Upsetting of non-circular blocks is characterized by the three-dimensional deformation with lateral sidewise spread as well as axial bulging along thickness. A kinematically admissible velocity field for the upsetting of prismatic or non-prismatic blocks is proposed which considers the different frictional conditions at the top and bottom surfaces of a billet. From the proposed velocity field the upper-bound load and the deformed configuration are determined by minimizing the total power consumption with respect to some chosen parameters. Experiments are carried out with annealed SM 15C steel billets at room temperature for different billet shapes and frictional conditions. The theoretical predictions both in the forging load and the deformed configurations are shown to be in good agreement with the experimental observations. Therefore, the velocity field proposed in this work can be used for the prediction of forging load and deformation in upsetting of prismatic or non-prismatic blocks, considering the different frictional conditions at two flat dies.