• 제목/요약/키워드: Frictional Impact

검색결과 41건 처리시간 0.028초

컴퓨터 시뮬레이션에 의한 관성과 마찰 에너지를 이용하는 충격흡수시설의 개발 (Development of a Crash Cushion Using the Frictional and Inertial Energy by Computer Simulation)

  • 김동성;김기동;고만기;김광주
    • 한국방재학회 논문집
    • /
    • 제9권2호
    • /
    • pp.23-30
    • /
    • 2009
  • 충격흡수시설은 주행차로를 벗어난 차량이 도로상의 고정된 구조물과의 직접적인 충돌을 방지하도록 하기 위한 보호시설이다. 이러한 기능은 충돌차량이 안전하게 점진적으로 멈추도록 속도를 감소시킴으로써 이루어진다. 기존의 일반적인 충격흡수시설에는 이러한 기능을 수행하기 위해서 다음의 두 가지 개념 중 하나가 적용된다. 첫 번째 개념은 파괴 또는 소성변형이 가능한 재료에 의해 충돌차량의 운동에너지를 흡수하는 것이고, 두 번째 개념은 충돌차량의 운동량을 차량의 이동경로에 놓인 소모성 재료의 질량체에 전달하는 것이다. 일반적으로 첫 번째 개념을 이용한 충격흡수시설은 압축(비관성) 충격흡수시설로 분류되고, 두 번째 개념을 이용한 충격흡수시설은 관성 충격흡수시설로 분류된다. 본 논문의 목적은 위에서 언급한 두 가지 개념을 동시에 적용한 압축형 충격흡수시설의 개발이다. 실물차량 충돌시험을 최소화 할 수 있도록 관성 에너지와 마찰 에너지 소산을 고려한 예비설계 가이드를 수립하고 충격흡수시설 개발을 위한 컴퓨터 시뮬레이션을 수행하였다. 시뮬레이션을 위하여 도로안전시설물 해석에 가장 많이 사용되는 LS-DYNA를 이용하였다. 개발된 충격흡수시설은 국내지침 CC2급의 다양한 충돌조건에 대한 성능 평가 기준을 만족하였다.

동압축 하중을 받는 재료의 고변형도율에서의 마찰영향 (The friction effects at high strain rates of materials under dynamic compression loads)

  • 김문생
    • 대한기계학회논문집
    • /
    • 제11권3호
    • /
    • pp.454-464
    • /
    • 1987
  • 본 연구에서는 충격하중하에서 고변형도 .epsilon.=ln(h/h$_{o}$ )>1.0, 고변형도율 (.epsilon.>$10^{3}$m/s/m)로 변형하는 재료에 대하여 응력, 변형도, 변형도율사이의 함수관 계를 유도하고, 다음과 같은 현상들을 규명하였다. (1) 고변형도율에서 응력, 변형 도, 변형도율사이의 함수관계식 유도. (2) 압축하중시 시편과 접촉부재사이의 접촉면 에서 발생하는 마찰영향의 조사. (3) 유동응력과 시편의 기하학적 형상사이의 관계식 유도. (4) 압축하중시 재료의 제동현상(lock-up phenomena)의 해석.

Processing Flaxseed for Food and Feed Uses

  • Wiesenborn, Dennis;Tostenson, Kristi;Kangas, Nancy;Zheng, Yun-Ling;Hall III, Clifford;Niehaus, Mary;Jarvis, Paul;Schwarz, Jurgen;Twombly, Wesley
    • Food Science and Biotechnology
    • /
    • 제14권3호
    • /
    • pp.305-310
    • /
    • 2005
  • Flaxseed is outstanding for lignans and oil rich in ${\alpha}$-linolenic acid which protect against several major illnesses. Better understanding of processing and storage characteristics of flaxseed will increase options for food use. Lignans and oil are found in the hull and embryo, respectively. Comparison of pearling and impact-dehulling processes for separation of lignan and oil-rich fractions showed the impact process was less effective, but easier to scale-up. Screw-pressing embryo reduced oil yield compared to whole seed, but doubled productivity and sharply reduced frictional heating of the oil. Flaxseed hull and embryo, also whole, ground and steamed-ground samples, were stable up to 30 weeks in closed containers at $23^{\circ}C$. Steamed-ground samples in open trays at $40^{\circ}C$ deteriorated markedly (peroxide value > 100 by 22 weeks); yet, whole seed remained stable. Incorporation of 18% flaxseed embryo into yellow perch feed increased ${\alpha}$-linolenic acid to 13 to l4% of muscle and liver lipids, compared to 0.5 to 0.7% in the no-embryo control. Feed conversion ratio, weight gain, and survival were similar. These studies are helping to establish the technological base for processing and utilizing flaxseed and flaxseed fractions to improve human diets.

열차운행속도 상승에 따른 레일마모 및 캔트조정 연구 (A Study on Wearing of Rail and Adjustment of Cant in Accordance with Increase in Running Speed of Train)

  • 신길철;주봉규;정성현
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2007년도 춘계학술대회 논문집
    • /
    • pp.1121-1128
    • /
    • 2007
  • Subway routes $1{\sim}4$ were constructed in gravel roadbed track structure in consideration of the technological capabilities, construction cost and duration at the time of the initial construction. As such, 224.8km, approximately 81.2% of entire length, of total length of railway track at 276.9km was constructed on gravel roadbed. However, improvement of gravel roadbed to concreted roadbed began in 1998 due to problems including frequent repair works and limited time application for such works caused by occurrence of tract distortion during operation as well as lowering of roadbed functions and generation of dust caused by frictional power, impact absorption capabilities, abrasion and crushing of gravel on roadbed. Currently, this improvement is continuing with target of converting entire route into concreted roadbed structure. Therefore, this Study modifies formula for setting cant, analyze the correlation between wearing of rail side of the curvature and cant insufficiency following increasing of the running speed of the train, and to present the directions for fundamental review for adjustment of cant insufficiencies at the time of improvement of gravel roadbed to concreted roadbed that is being implemented on the operational tracks of the railway trains.

  • PDF

Optimal Friction Materials of Tiny Piezoelectric Ultrasonic Linear Motor

  • Lee, Kyong-Jae;Nahm, Sahn;Kang, Jin-Kyu;Ko, Hyun-Phill;Kang, Chong-Yun;Kim, Hyun-Jae;Yoon, Seok-Jin
    • Transactions on Electrical and Electronic Materials
    • /
    • 제6권6호
    • /
    • pp.249-255
    • /
    • 2005
  • In recent years, a novel tiny piezoelectric linear motor converting a radial mode vibration to a longitudinal mode vibration driven by the impact force has been developed for a camera optical module. The tiny piezoelectric motor is consisted of a shaft, mobile element, and piezoelectric transducer. In this work, the frictional coefficient and static friction force of the interface between the shaft and the mobile element have been investigated according to their respective materials. It was found that two combinations, namely Pyrex glass or stainless steel for the shaft and stainless steel (SUS) for the mobile element, exhibited good dynamic behaviors in the tiny ultrasonic linear motor, which was newly developed based on operating concepts based on Newton's law.

속도 상승에 따른 캔트조정 사례 분석 (A Study on Wearing of Rail and Adjustment of Cant in Accordance with Increase in Running Speed of Train)

  • 신길철;양회성;주봉규;정성현
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2008년도 춘계학술대회 논문집
    • /
    • pp.151-157
    • /
    • 2008
  • Subway routes $1\sim4$ were constructed in gravel roadbed track structure in consideration of the technological capabilities, construction cost and duration at the time of the initial construction. As such, 224.8km, approximately 81.2% of entire length, of total length of railway track at 276.9km was constructed on gravel roadbed. However, improvement of gravel roadbed to concreted roadbed began in 1998 due to problems including frequent repair works and limited time application for such works caused by occurrence of tract distortion during operation as well as lowering of roadbed functions and generation of dust caused by frictional power, impact absorption capabilities, abrasion and crushing of gravel on roadbed. Currently, this improvement is continuing with target of converting entire route into concreted roadbed structure. Therefore, this Study modifies formula for setting cant, analyze the correlation between wearing of rail side of the curvature and cant insufficiency following increasing of the running speed of the train, and to present the directions for fundamental review for adjustment of cant insufficiencies at the time of improvement of gravel roadbed to concreted roadbed that is being implemented on the operational tracks of the railway trains.

  • PDF

펄스방전 확공형 앵커용 시공 장비의 적용성 검토 (A Case Study of Applicability of Machines of Pulse Powered Underreamed Anchors)

  • 강금식;김재형;조규연;김태훈;김선주
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2009년도 세계 도시지반공학 심포지엄
    • /
    • pp.1100-1106
    • /
    • 2009
  • This study intends to develop a pulse discharge device to strengthen the pushing power by expanding the cavity of the anchor settlement to form a spheric root for the purpose of constructing the economical and stable anchor. and, a series of field test were carried out in order to check applicability of machines of pulse powered underreamed anchors. Through the experiments, the electrical characteristics of the pulse power equipment had been identified it and the dynamic pressure generated from the subsequent change had been measured. Here, the measured dynamic pressure is the cavity expansion pressure to impact on the ground around the anchor settlement. Since this pressure has effects of cavity expansion and bored surface hardening with dynamic hardening effects on the anchor settlement, it is expected that it will largely contribute the increase of pushing power with a strong frictional resistance.

  • PDF

고심도 암반의 스폴링 평가에 대한 사례 분석 및 광주 스폴링 모델링 (A Case Analysis on the Spalling Evaluation of the Deep Rock Mass and Pillar Spalling Modeling)

  • 박승훈;권상기;이창수;이재원;윤석;김건영
    • 터널과지하공간
    • /
    • 제30권2호
    • /
    • pp.109-135
    • /
    • 2020
  • 전 세계적으로 지하의 고심도화는 다양한 시설 개발의 목적으로 관심도가 높은 상황이다. 고심도 지하공간의 개발은 암반의 구조적 안정성이 바탕이 되어야 한다. 고심도 지하공간에서는 스폴링이 구조적 안정성에 영향을 미치는 것으로 알려져 있다. 스폴링을 예측하기 위해서 많은 연구자들은 터널 주변에서 발생하는 응력상태, 암반상태 및 암종에 따라 제안하였다. 또한, 현지에서 측정된 결과와 FLAC, EXAMINE, UDEC, Insight 2D, FRACOD 등의 컴퓨터 모델링을 이용하여 스폴링 해석 방법에 대한 검증이 수행되었다. 캐나다 URL(Underground Research Tunnel)에서는 스폴링 현상에 대한 정확한 예측을 위해 CWFS(Cohesion Weakening Frictional Strengthening)모델을 제안하고 이를 비교 분석하였다. CWFS 모델은 스폴링 현상을 예측하는데 신뢰도 높은 방법으로 확인되었다. 본 연구에서는 고심도 암반에서의 스폴링 발생에 대한 사례들을 분석하고 스폴링 발생조건과 CWFS 모델의 예측 결과를 비교하였다. 이를 통해 고심도 조건에서의 광주를 대상으로 스폴링 예측에 대한 적용성을 검토하고자 하였다.

위상최적설계를 통한 트레일러 제5차륜 연결구조물의 경량화 및 내구성 (New Weight-reduction Design of the Fifth Wheel Coupler with a Trailer by Using Topology Optimization and Durability Tests)

  • 김철;이승윤;이영춘
    • 한국자동차공학회논문집
    • /
    • 제24권2호
    • /
    • pp.137-143
    • /
    • 2016
  • The fifth wheel coupler is a heavy automotive coupling structure which connects a tractor and a trailer used for heavy-duty trucks widely. It is subjected to various loads simultaneously such as rolling, pitching and yawing loads as well as coupling frictional and impact loadings. Most of existing couplers have been overdesigned and, therefore, it is necessary to reduce the dead weight to increase the fuel efficiency. The topology optimization was applied in order to find conceptual layout designs which could show major load paths and ribs locations, and then the size structural optimization was performed in order to determine the heights and thicknesses of coupler ribs with the predetermined various loading conditions for the development of a new slim coupler with a minimum weight and high enough strength and stiffness. As the results of the topology optimum design, an efficient new coupling structure for truck trailers was designed. The weight of the new fifth wheel coupler was reduced by 4.9 %, compared with the existing one, even though all strength requirements were satisfied. The fatigue test of the new coupler was performed with cyclic vertical loads (+78.4 to +235.2 kN) and horizontal loads (-91.2 to +91.2 kN) simultaneously at 1 Hz and the life of 2,000,000 cycles were achieved without failure.

패류껍질어업에서 사용 중인 멍의 형태적 특성에 따른 고정력의 차이 (Difference of holding power of concrete weight used in shellfish shell fishery by its shape characteristics)

  • 이건호;조삼광;김인옥;차봉진;정성재
    • 수산해양기술연구
    • /
    • 제54권1호
    • /
    • pp.25-31
    • /
    • 2018
  • In this study, the differences of holding power according to the shape and weight distribution of concrete weight used in shellfish shell fishery were investigated through the experiments. To investigate the differences in shape, five bar-shaped concrete weights with the same length and different cross-sectional shapes were produced. The sectional shape of each weight was square, triangle, circle, small cross, and large cross (SQ, TR, CI, CR-S, CR-L). Ten rectangular parallelepiped weights with different bottom area and cross-sectional area were produced. To investigate the differences by the weight distribution, the holding power on the square model (SQ) with six 50 g weights at different positions was investigated. All the holding power was obtained by measuring the tensile force generated when the concrete weight was pulled at a constant speed on the sand. As a result, there were no differences in holding power between the ten rectangular weights. However, the experiment on weights with different cross-sectional shapes showed differences in holding power. The holding power was higher in the order of CR-L > CR-S > CI > TR > SQ. In the weight distribution test, the holding power was higher as the front side of the weight was heavier. Generally, the frictional force is the same even if the shape is different, when two objects have the same value in the weight and the roughness. On the other hand, it seems to have a large impact when the shape of the bottom is deformed in the course of pulling the object. Particularly, the larger the degree of protrusion like cruciform weights, the more the holding power increased while deeply digging the bottom. It is also likely that the holding power increases as the front weight increases.