• 제목/요약/키워드: Friction speed

검색결과 1,253건 처리시간 0.028초

초공동 수중운동체의 조종면 조합에 따른 심도 및 직진 제어성능 분석 (Performance Analysis on Depth and Straight Motion Control based on Control Surface Combinations for Supercavitating Underwater Vehicle)

  • 유범열;모혜민;김승균;황종현;박정훈;전윤호
    • 한국군사과학기술학회지
    • /
    • 제24권4호
    • /
    • pp.435-448
    • /
    • 2021
  • This study describes the depth and straight motion control performance depending on control surface combinations of a supercavitating underwater vehicle. When an underwater vehicle experiences supercavitation, friction resistance can be minimized, thus achieving the effect of super-high-speed driving. Six degrees of freedom modeling of the underwater vehicle are performed and the guidance and control loops are designed with not only a cavitator and an elevator, but also a rudder and a differential elevator to improve the stability of the roll and yaw axis. The control performance based on the combination of control surfaces is analyzed by the root-mean-square error for keeping depth and straight motion.

자동변속기 적용 유성기어의 헬릭스 각 방향에 의한 쓰러스트 베어링 작용 축 하중 연구 (A Study of Effects of the Helical Angle Directions of Planetary Gear Sets on the Axial Forces on Thrust Bearings in an Automatic Transmission)

  • 권현식
    • 한국기계가공학회지
    • /
    • 제20권3호
    • /
    • pp.92-99
    • /
    • 2021
  • An automatic transmission, which consists of several decks of planetary gear sets, provides multiple speed and torque ratios by actuating brakes and clutches (mechanical friction components) for connecting central members of the planetary gear sets. The gear set consists of the sun gear, the ring gear, and the carrier supporting multiple planet gears with pin shafts. In designing a new automatic transmission, there are many steps to design and analyze: gears, brakes and clutches, shafts, and other mechanical components. Among them, selecting thrust bearings that not only allow the relative rotation of the central members and other mechanical components but also support axial forces coming from them is important; doing so yields superior driving performance and better fuel efficiency. In selecting thrust bearings, the magnitude of axial forces on them is a critical factor that affects their bearing size and performance; its results are systematically related to the direction of the helical angle of each planetary gear set (a geometric design profile). This research presents the effects of the helical angle direction on the axial forces acting on thrust bearings in an automatic transmission consisting of planetary gear sets. A model transmission was built by analyzing kinematics and power flows and by designing planetary gear sets. The results of the axial forces on thrust bearings were analyzed for all combinations of helix angle directions of the planetary gear sets.

Effect of Free Surface Based on Submergence Depth of Underwater Vehicle

  • Youn, Taek-Geun;Kim, Min-Jae;Kim, Moon-Chan;Kang, Jin-Gu
    • 한국해양공학회지
    • /
    • 제36권2호
    • /
    • pp.83-90
    • /
    • 2022
  • This paper presents the minimum submergence depth of an underwater vehicle that can remove the effect of free surface on the resistance of the underwater vehicle. The total resistance of the underwater vehicle in fully submerged modes comprises only viscous pressure and friction resistances, and no wave resistance should be present, based on the free surface effect. In a model test performed in this study, the resistance is measured in the range of 2 to 10 kn (1.03-5.14 m/s) under depth conditions of 850 mm (2.6D) and 1250 mm (3.8D), respectively, and the residual resistance coefficients are compared. Subsequently, resistance analysis is performed via computational fluid dynamics (CFD) simulation to investigate the free surface effect based on various submergence depths. First, the numerical analysis results in the absence of free surface conditions and the model test results are compared to show the tendency of the resistance coefficients and the reliability of the CFD simulation results. Subsequently, numerical analysis results of submergence depth presented in a reference paper are compared with the model test results. These two sets of results confirm that the resistance increased due to the free surface effect as the high speed and depth approach the free surface. Therefore, to identify a fully submerged depth that is not affected by the free surface effect, case studies for various depths are conducted via numerical analysis, and a correlation for the fully submerged depth based on the Froude number of an underwater vehicle is derived.

Stiffness effect of testing machine indenter on energy evolution of rock under uniaxial compression

  • Tan, Yunliang;Ma, Qing;Wang, Cunwen;Liu, Xuesheng
    • Geomechanics and Engineering
    • /
    • 제30권4호
    • /
    • pp.345-352
    • /
    • 2022
  • When rock burst occurs, the damaged coal, rock and other fragments can be ejected to the roadway at a speed of up to 10 m/s. It is extremely harmful to personnel and mining equipment, and seriously affects the mining activities. In order to study the energy evolution characteristics, especially kinetic energy, in the process of rock mass failure, this paper first analyzes the energy changes of the rock in different stages under uniaxial compression. The formula of the kinetic energy of rock sample considering the energy from the indenter of the testing machine is obtained. Then, the uniaxial compression tests with different stiffness ratios of the indenter and rock sample are simulated by numerical simulation. The kinetic energy Ud, elastic strain energy Ue, friction energy Uf, total input energy U and surface energy Uθ of crack cracking are analyzed. The results show that: The stiffness ratio has influence on the peak strength, peak strain, Ud, Ue, Uθ, Uf and U of rock samples. The variation trends of strength, strain and energy with stiffness are different. And when the stiffness ratio increases to a certain value, if the stiffness of the indenter continues to increase, it will have no longer effect on the rock sample.

Experimental and numerical FEM of woven GFRP composites during drilling

  • Abd-Elwahed, Mohamed S.;Khashaba, Usama A.;Ahmed, Khaled I.;Eltaher, Mohamed A.;Najjar, Ismael;Melaibari, Ammar;Abdraboh, Azza M.
    • Structural Engineering and Mechanics
    • /
    • 제80권5호
    • /
    • pp.503-522
    • /
    • 2021
  • This paper investigates experimentally and numerically the influence of drilling process on the mechanical and thermomechanical behaviors of woven glass fiber reinforced polymer (GFRP) composite plate. Through the experimental analysis, a CNC machine with cemented carbide drill (point angles 𝜙=118° and 6 mm diameter) was used to drill a woven GFRP laminated squared plate with a length of 36.6 mm and different thicknesses. A produced temperature during drilling "heat affected zone (HAZ)" was measured by two different procedures using thermal IR camera and thermocouples. A thrust force and cutting torque were measured by a Kistler 9272 dynamometer. The delamination factors were evaluated by the image processing technique. Finite element model (FEM) has been developed by using LS-Dyna to simulate the drilling processing and validate the thrust force and torque with those obtained by experimental technique. It is found that, the present finite element model has the capability to predict the force and torque efficiently at various drilling conditions. Numerical parametric analysis is presented to illustrate the influences of the speeding up, coefficient of friction, element type, and mass scaling effects on the calculated thrust force, torque and calculation's cost. It is found that, the cutting time can be adjusted by drilling parameters (feed, speed, and specimen thickness) to control the induced temperature and thus, the force, torque and delamination factor in drilling GFRP composites. The delamination of woven GFRP is accompanied with edge chipping, spalling, and uncut fibers.

다공질 공기 베어링을 적용한 반도체 웨이퍼 연마용 스핀들 개발 (Development of Wafer Grinding Spindle with Porous Air Bearings)

  • 이동현;김병옥;전병찬;허균철;김기수
    • Tribology and Lubricants
    • /
    • 제39권1호
    • /
    • pp.28-34
    • /
    • 2023
  • Because of their cleanliness, low friction, and high stiffness, aerostatic bearings are used in numerous applications. Aerostic bearings that use porous materials as means of flow restriction have higher stiffness than other types of bearings and have been successfully applied as guide bearings, which have high motion accuracy requirements. However, the performances of porous bearings exhibit strong nonlinearity and can vary considerably depending on design parameters. Therefore, accurate prediction of the performance characteristics of porous bearings is necessary or their successful application. This study presents a porous bearing design and performance analysis for a spindle used in wafer polishing. The Reynolds and Darcy flow equations are solved to calculate the pressures in the lubrication film and porous busing, respectively. To verify the validity of the proposed analytical model, the calculated pressure distribution in the designed bearing is compared with that derived from previous research. Additional parametric studies are performed to determine the optimal design parameters. Analytical results show that optimal design parameters that obtain the maximum stiffness can be derived. In addition, the results show that cross-coupled stiffness increases with rotating speed. Thus, issues related to stability should be investigated at the design stage.

제설제 사용으로 인한 노면 미끄럼저항 특성 연구 (A Study of Skid Resistance Characteristics by Deicing Chemicals)

  • 이승우;우창완
    • 대한토목학회논문집
    • /
    • 제26권5D호
    • /
    • pp.813-819
    • /
    • 2006
  • 미끄럼 저항은 타이어와 도로노면의 마찰저항을 나타내는 지수로 차량의 주행 안전성에 지대한 영향을 미친다. 타이어의 상태, 노면의 마모도, 주행속도, 노면의 건조, 습윤, 결빙 등에 따라 미끄럼저항의 크기는 달라진다. 특히 겨울철 도로노면의 경우 강설 후 기온강하에 도로포장표면이 결빙이 발생할 경우 미끄럼저항이 급격히 저하되며, 미끄럼저항을 회복하고자 제설 작업을 수행하게 된다. 제설작업 후에는 습윤상태로 노면조건이 바뀌게 되는데, 제설제가 노면에 잔류하게 되면 일반적인 습윤상태에서의 미끄럼저항을 확보치 못할 수 있다. 본 연구에서는 국내 포장도로의 대다수를 차지하는 밀입도 아스팔트와 타이닝 콘크리트 포장노면에 대하여 실험실 조건에서 노면 결빙시, 제설중 제설후 잔류물이 노면에 있을 경우의 조건에서의 미끄럼저항을 정량적으로 평가하였다. 연구 결과 노면 결빙시 미끄럼저항 회복시간은 수용액 살포방법이 고체염 살포방법 보다 빠르며 제설제 중에는 소금이 가장 빠르게 나타났다. 노면에 잔류한 제설제는 콘크리트 시편이 아스팔트 시편보다 미끄럼저항 값이 높게 나타났으며 습윤 노면 상태와 비교시 미끄럼저항 확보율은 54~80% 이다.

Modeling and experimental verification of phase-control active tuned mass dampers applied to MDOF structures

  • Yong-An Lai;Pei-Tzu Chang;Yan-Liang Kuo
    • Smart Structures and Systems
    • /
    • 제32권5호
    • /
    • pp.281-295
    • /
    • 2023
  • The purpose of this study is to demonstrate and verify the application of phase-control absolute-acceleration-feedback active tuned mass dampers (PCA-ATMD) to multiple-degree-of-freedom (MDOF) building structures. In addition, servo speed control technique has been developed as a replacement for force control in order to mitigate the negative effects caused by friction and inertia. The essence of the proposed PCA-ATMD is to achieve a 90° phase lag for a structure by implementing the desired control force so that the PCA-ATMD can receive the maximum power flow with which to effectively mitigate the structural vibration. An MDOF building structure with a PCA-ATMD and a real-time filter forming a complete system is modeled using a state-space representation and is presented in detail. The feedback measurement for the phase control algorithm of the MDOF structure is compact, with only the absolute acceleration of one structural floor and ATMD's velocity relative to the structure required. A discrete-time direct output-feedback optimization method is introduced to the PCA-ATMD to ensure that the control system is optimized and stable. Numerical simulation and shaking table experiments are conducted on a three-story steel shear building structure to verify the performance of the PCA-ATMD. The results indicate that the absolute acceleration of the structure is well suppressed whether considering peak or root-mean-square responses. The experiment also demonstrates that the control of the PCA-ATMD can be decentralized, so that it is convenient to apply and maintain to real high-rise building structures.

마그네틱 기어를 적용한 항공기용 전기추진 시스템의 성능 연구 (Study on Performance of Electric Propulsion Systems for Aircraft applying Magnetic Gears)

  • 이성현;김래은;서정무
    • 항공우주시스템공학회지
    • /
    • 제17권6호
    • /
    • pp.27-34
    • /
    • 2023
  • 본 논문은 마그네틱 기어를 적용한 항공기용 전기추진시스템에 관하여 기술한다. 항공기 추진모터는 높은 토크가 요구되기 때문에 감속기를 결합하여 토크를 증대시킬 수 있다. 하지만 기계식 기어는 마찰에 의한 손실과 열 및 진동 등으로 인해 잦은 유지 보수가 필요하다. 기계식 기어를 사용하지 않는 직접구동형 전동기의 경우 고 토크를 달성하기 위한 설계 시 전동기의 크기와 중량이 증가하게 된다. 본 논문은 항공기의 전기추진 시스템에서 기계식 기어의 유지보수와 직접구동형 전동기의 중량 증가 문제를 해결하기 위해 마그네틱 기어 적용 방안을 제안한다. 항공기용 전기추진 시스템에 적합한 마그네틱 기어를 설계하고 직접구동형 전동기와 성능을 비교함으로 마그네틱 기어의 적용 가능성을 확인한다.

쉘 모델을 이용한 공기 포일 스러스트 베어링의 열-유체-구조 연동 해석 (Thermo-Fluid-Structure Coupled Analysis of Air Foil Thrust Bearings using Shell Model)

  • 윤종완;문소연;박상신
    • Tribology and Lubricants
    • /
    • 제40권1호
    • /
    • pp.17-23
    • /
    • 2024
  • This study analyzes the thermal effects on the performance of an air foil thrust bearing (AFTB) using COMSOL Multiphysics to approximate actual bearing behavior under real conditions. An AFTB is a sliding-thrust bearing that uses air as a lubricant to support the axial load. The AFTB consists of top and bump foils and supports the rotating disk through the hydrodynamic pressure generated by the wedge effect from the inclined surface of the top foil and the elastic deformation of the bump foils, similar to a spring. The use of air as a lubricant has some advantages such as low friction loss and less heat generation, enabling air bearings to be widely used in high-speed rotating systems. However, even in AFTB, the effects of energy loss due to viscosity at high speeds, interface frictional heat, and thermal deformation of the foil caused by temperature increase cannot be ignored. Foil deformation derived from the thermal effect influences the minimum decay in film thickness and enhances the film pressure. For these reasons, performance analyses of isothermal AFTBs have shown few discrepancies with real bearing behavior. To account for this phenomenon, a thermal-fluid-structure analysis is conducted to describe the combined mechanics. Results show that the load capacity under the thermal effect is slightly higher than that obtained from isothermal analysis. In addition, the push and pull effects on the top foil and bump foil-free edges can be simulated. The differences between the isothermal and thermal behaviors are discussed.