DOI QR코드

DOI QR Code

Study on Performance of Electric Propulsion Systems for Aircraft applying Magnetic Gears

마그네틱 기어를 적용한 항공기용 전기추진 시스템의 성능 연구

  • Received : 2023.09.04
  • Accepted : 2023.11.22
  • Published : 2023.12.31

Abstract

This paper presents the application of a magnetic gear to the electric propulsion system for an aircraft. Since high torque is required in aircraft electric propulsion systems, combining a speed reducer can amplify the torque. However, mechanical gears have issues, such as friction, vibration, and heat generation, which lead to maintenance challenges. In the case of a direct-drive motor that does not use mechanical gears, the size and weight of the motor increase to achieve high torque. This paper proposes the application of a magnetic gear to solve the maintenance issues of mechanical gears and the weight increase problem of direct-drive motors in aircraft electric propulsion systems. In this paper, a magnetic gear suitable for aircraft electric propulsion systems is designed, and it is compared with a direct-drive motor in terms of performance and the feasibility of applying the magnetic gear is verified.

본 논문은 마그네틱 기어를 적용한 항공기용 전기추진시스템에 관하여 기술한다. 항공기 추진모터는 높은 토크가 요구되기 때문에 감속기를 결합하여 토크를 증대시킬 수 있다. 하지만 기계식 기어는 마찰에 의한 손실과 열 및 진동 등으로 인해 잦은 유지 보수가 필요하다. 기계식 기어를 사용하지 않는 직접구동형 전동기의 경우 고 토크를 달성하기 위한 설계 시 전동기의 크기와 중량이 증가하게 된다. 본 논문은 항공기의 전기추진 시스템에서 기계식 기어의 유지보수와 직접구동형 전동기의 중량 증가 문제를 해결하기 위해 마그네틱 기어 적용 방안을 제안한다. 항공기용 전기추진 시스템에 적합한 마그네틱 기어를 설계하고 직접구동형 전동기와 성능을 비교함으로 마그네틱 기어의 적용 가능성을 확인한다.

Keywords

Acknowledgement

본 연구는 산업통상자원부(MOTIE)와 한국에너지기술평가원(KETEP), 한국산업기술평가관리원(KEIT)의 지원을 받아 수행됨. (No. 2021202080026B & 20013372)

References

  1. G. Romeo, C. Novarese, I. Moraglio, "ENFICA-FC: Preliminary Survey & Design of 2-Seat Aircraft Powered by Fuel Cells Electric Propulsion, " AIAA Aviation Technology, Integration and Operations Conference, AIAA 2007-7754, 2007.
  2. A. D. Anderson et al., "System Weight Comparison of Electric Machine Topologies for Electric Aircraft Propulsion," AIAA/IEEE Electric Aircraft Technologies Symposium (EATS), Cincinnati, OH, USA, pp. 1-16, 2018.
  3. P. Alvarez, M. Satrustegui, I. Elosegui and M. Martinez-Iturralde, "Review of High Power and High Voltage Electric Motors for Single-Aisle Regional Aircraft," IEEE Access, vol. 10, pp. 112989-113004, 2022.
  4. H. G. Kim, S. C. Kim, "Prediction of Battery Performance of Electric Propulsion Lightweight Airplane for Flight Profiles," Journal of the Korea Academia-Industrial cooperation Society, vol. 22, no. 5, pp. 15-21, 2021
  5. J. Z. Bird, "A Review of Electric Aircraft Drivetrain Motor Technology," IEEE Transactions on Magnetics, vol. 58, no. 2, pp. 1-8, Feb 2022. https://doi.org/10.1109/TMAG.2021.3081719
  6. B. McGilton, R. Crozier, A. McDonald and M. Mueller, "Review of magnetic gear technologies and their applications in marine energy," IET Renewable Power Generation, vol. 12, no. 2, pp. 174-181, 2018 https://doi.org/10.1049/iet-rpg.2017.0210
  7. K. Atallah and D. Howe, "A novel high-performance magnetic gear," IEEE Transactions on Magnetics, vol. 37, no. 4, pp. 2844-2846, July 2001. https://doi.org/10.1109/20.951324
  8. K. Aiso and K. Akatsu, "A novel reluctance magnetic gear for high speed motor," IEEE Energy Conversion Congress and Exposition (ECCE), Milwaukee, WI, USA, pp. 1-7, 2016.
  9. K. S. Jung, "Speed Control Of The Magnet Gear-Based Speed Reducer For Non-contact Power Transmission," Journal of Korea Academia-Industrial cooperation Society, Vol. 17, No. 7, pp. 380-388, 2016. https://doi.org/10.5762/KAIS.2016.17.7.380
  10. T. F. Tallerico, J. J. Scheidler and Z. A. Cameron, "Electromagnetic Mass and Efficiency of Magnetic Gears for Electrified Aircraft," 2019 AIAA/IEEE Electric Aircraft Technologies Symposium (EATS), Indianapolis, IN, USA, pp. 1-25, 2019.
  11. C. S. Kim, E. J. Park, S. Y. Jung, Y. J. Kim, "Characteristic Analysis of Magnetic Gears According to the Number of Poles," The Korean Institute of Electrical Engineers, pp.82-84, 2018.
  12. P. M. Tlali, R. -J. Wang and S. Gerber, "Magnetic gear technologies: A review," International Conference on Electrical Machines (ICEM), Berlin, Germany, pp. 544-550, 2014.
  13. C. S. Gim, S. H. Kim, E. J. Park, S. Y. Jung, Y. J. Kim, "Analysis of Loss Characteristics of Magnetic Gear for Operating Range Selection," Korean Institute of Electrical Engineers, pp.109-111, 2018.
  14. D. J. Evans and Z. Q. Zhu, "Influence of design parameters on magnetic gear's torque capability," IEEE International Electric Machines & Drives Conference (IEMDC), Niagara Falls, ON, Canada, pp. 1403-1408, 2011.
  15. H. Y. Wong, H. Baninajar, B. Dechant and J. Bird, "Designing a Magnetic Gear for an Electric Aircraft Drivetrain," IEEE Energy Conversion Congress and Exposition (ECCE), Detroit, MI, USA, pp. 1-6, 2020.
  16. K. Aiso, K. Akatsu and Y. Aoyama, "A Novel Reluctance Magnetic Gear for High-Speed Motor," IEEE Transactions on Industry Applications, vol. 55, no. 3, pp. 2690-2699, May-June 2019. https://doi.org/10.1109/TIA.2019.2900205