• Title/Summary/Keyword: Friction properties

Search Result 1,518, Processing Time 0.029 seconds

Laminar Forced Convective Heat Transfer to Near-Critical Water in a Tube

  • Lee, Sang-Ho
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.11
    • /
    • pp.1756-1766
    • /
    • 2003
  • Numerical modeling is carried out to investigate forced convective heat transfer to near-critical water in developing laminar flow through a circular tube. Due to large variations of thermo-physical properties such as density, specific heat, viscosity, and thermal conductivity near thermodynamic critical point, heat transfer characteristics show quite different behavior compared with pure forced convection. With flow acceleration along the tube unusual behavior of heat transfer coefficient and friction factor occurs when the fluid enthalpy passes through pseudocritical point of pressure in the tube. There is also a transition behavior from liquid-like phase to gas-like phase in the developing region. Numerical results with constant heat flux boundary conditions are obtained for reduced pressures from 1.09 to 1.99. Graphical results for velocity, temperature, and heat transfer coefficient with Stanton number are presented and analyzed.

Tribological Property of Surface Modified Carbon Nanotube Reinforced Polymer Matrix Composites (표면 개질화된 탄소나노튜브 강화 고분자 복합재료의 마모 특성)

  • Park, Joo-Hyuk;Abu Bakar, Sulong
    • Tribology and Lubricants
    • /
    • v.21 no.6
    • /
    • pp.302-305
    • /
    • 2005
  • Various carbon nanotubes (CNTs) are added into the epoxy matrix as reinforcements to investigate the effect on the wear behavior. Effects to the tribological properties of different loading concentrations and types of surface modification are investigated by using a linear reciprocal wear tester. As increasing the concentration of CNTs shows the reduction of the wear loss. Moreover, surface modified CNTs give better tribological property than as produced CNTs. It is due that the functional groups on the surface of CNTs increase the interfacial bonding between CNTs and epoxy matrix through chemical bonding. Changes in worn surface morphology are observed by optical microscope and SEM to investigate the wear behavior. CNTs in the epoxy matrix near the surface are exposed and it becomes the lubricating working film on the worn surface. It reduces the friction and results in the lower surface roughness morphology in the epoxy matrix as increasing the contents of the CNTs.

Characterizing the geotechnical properties of natural, Israeli, partially cemented sands

  • Frydman, Sam
    • Geomechanics and Engineering
    • /
    • v.3 no.4
    • /
    • pp.323-337
    • /
    • 2011
  • Israel's coastal region consists, mainly, of Pleistocene and Holocene sands with varying degrees of calcareous cementation, known locally as "kurkar". Previous studies of these materials emphasized the difficulty in their geotechnical characterization, due to their extreme variability. Consequently, it is difficult to estimate construction stability, displacements and deformations on, or within these soils. It is suggested that SPT and Menard pressuremeter tests may be used to characterize the properties of these materials. Values of elastic modulus obtained from pressuremeter tests may be used for displacement analyses at different strain levels, while accounting for the geometric dimensions (length/diameter ratio) of the test probe. A relationship was obtained between pressuremeter modulus and SPT blow count, consistent with published data for footing settlements on granular soils. Cohesion values, for a known friction angle, are estimated, by comparing field pressuremeter curves to curves from numerical (finite element or finite difference) analyses. The material analyzed in the paper is shown to be strain-softening, with the initial cohesion degrading to zero on development of plastic shear strains.

Experimental studies on rheological properties of smart dynamic concrete

  • Bauchkara, Sunil D.;Chore, H.S.
    • Advances in concrete construction
    • /
    • v.5 no.3
    • /
    • pp.183-199
    • /
    • 2017
  • This paper reports an experimental study into the rheological behaviour of Smart Dynamic Concrete (SDC). The investigation is aimed at quantifying the effect of the varying amount of mineral admixtures on the rheology, setting time and compressive strength of SDC containing natural sand and crushed sand. Ordinary Portland cement (OPC) in conjunction with the mineral admixtures was used in different replacement ratio keeping the mix paste volume (35%) and water binder ratio (0.4) constant at controlled laboratory atmospheric temperature ($33^{\circ}C$ to $35^{\circ}C$). The results show that the properties and amount of fine aggregate have a strong influence on the admixture demand for similar initial workability, i.e., flow. The large amounts of fines and lower value of fineness modulus (FM) of natural sand primarily increases the yield stress of the SDC. The mineral admixtures at various replacement ratios strongly contribute to the yield stress and plastic viscosity of SDC due to inter particle friction and cohesion.

Analysis of pile-up/sink-in during spherical indentation for various strain hardening levels

  • Shankar, S.;Loganathan, P.;Mertens, A. Johnney
    • Structural Engineering and Mechanics
    • /
    • v.53 no.3
    • /
    • pp.429-442
    • /
    • 2015
  • The measurement from the indentation process depends on the amount of pile-up or sink-in around the contact impressions. In this paper, finite element concept is utilized to study the pile-up and sink-in behaviour for the wide range of materials with different young's modulus, yield stresses, strain-hardening exponents and coefficient of friction values. The exact indentation model is created by using the two dimensional axisymmetrical model for simulating the spherical indentation process on the lines of Taljat and Pharr (2004) work. The result shows that during spherical indentation process the amount of pile-up is greatly influenced by the strain hardening exponents in addition to other material properties and depth of penetration. The numerical results from the finite element analysis are also validated using the exact multilinear material properties obtained from the tensile testing for the materials like mild steel, brass and aluminium.

Effects of Thermal Annealing on the Properties of Amorphous Carbon Nitride Films Deposited by PECVD (PECVD로 제조된 비정질 질화탄소 박막의 물성에 미치는 열처리 효과)

  • Moon, Hyung-Mo;Kim, Sang-Sub
    • Korean Journal of Materials Research
    • /
    • v.13 no.5
    • /
    • pp.303-308
    • /
    • 2003
  • Amorphous carbon nitride films deposited on Si(001) substrates by a plasma enhanced chemical vapor deposition (PECVD) technique using CH$_4$and $N_2$as reaction gases were thermally annealed at various temperatures under$ N_2$atmosphere, then their physical properties were investigated particularly as a function of annealing temperature. Above $600^{\circ}C$ a small amount of crystalline $\beta$-$C_3$$N_4$ phase evolves, while the film surface becomes very rough due to agglomeration of fine grains on the surface. As the annealing temperature increases, both the hardness and the $sp^3$ bonding nature are enhanced. In contrast to our expectation, higher annealing temperature results in a relatively higher friction mainly due to big increase in roughness at that temperature.

Study on Splicing Performance of Different Types of Staple Yarns

  • Das, A.;Ishtiaque, S.M.;Nagaraju, V.
    • Fibers and Polymers
    • /
    • v.5 no.3
    • /
    • pp.204-208
    • /
    • 2004
  • The present paper reports the detailed study on the splicing behavior of viscose staple fiber yarns made from ring, rotor, friction and air-jet spinning technologies. The linear density of all the yearns was kept constant at 29.5 tex. The splicing parameters like splicing pressure and duration of the splicing were taken as variables. Three levels of splicing pressure at constant splicing duration and three levels of splicing durations at constant splicing pressure were considered. Splices were introduced at all these levels for the four different technologies. These splices were tested for their tensile properties and the properties of splices were evaluated in terms of retained splice strength (RSS) and splice break ratio (SBR). The splice photographs were taken and splices were analyzed for their structure and for diameter profile along the length of the splice.

Mechanical Properties of Municipal Solid Wastes (비위생 매립토의 역학적 물성)

  • Mok, Young-Jin;Kim, Dae-Il;Cho, Eun-Hyuk
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1377-1383
    • /
    • 2005
  • Mechanical properties of Municipal Solid Wastes(MSW) and their influencing parameters were studied by using a series of triaxial compression tests and resonant column tests. The shear strength of MSW can be modeled by a bilinear failure criterion. As the unit weight increasing, cohesion and internal friction were increased linearly on semi-log scale. As the proportion of waste to soil increases, maximum shear moduli tend to decrease whereas minimum damping ratios increase. Shear moduli and damping of degradable waste are higher than those of non-degradable MSW.

  • PDF

A Study on the Material Properties of Grey Cast Iron for Cylinder Liner Treated by Thermo Plastic Deformation Process (열소성변형공정을 시행한 회주철제 실린더 라이너의 재료물성에 관한 연구)

  • Kim Tae-Hyoung;Kim Jong-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.6
    • /
    • pp.671-677
    • /
    • 2005
  • In internal combustion engines the usual material for the cylinder liner is because of its good wear resistance Apparently this wear resistance arises from the at iron to form a hard glazed surface when under sliding friction. When the cylinder liner wear limits, it shall be replace with new one according to the classification soci manufacturer's standards. However, adoption of alternative repairing method such a metalizing, thermo plastic deformation process became inevitable taking enormous cost renewal into consideration. In this paper. the material properties of cylinder liner of grey discussed on the basis of the results of experimental work of the thermo plastic deformation the worn out cylinder liner made of grey cast iron.

Enhanced Spherical Indentation Techniques for Rubber Property Evaluation (향상된 구형압입 고무 물성평가법)

  • Hwang, Kyu-Min;Oh, Jopng-Soo;Lee, Hyung-Yil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.12
    • /
    • pp.1357-1365
    • /
    • 2009
  • In this study, we enhance the numerical approach of Lee et al.$^{(1)}$ to spherical indentation technique for property evaluation of hyper-elastic rubber. We first determine the friction coefficient between rubber and indenter in a practical viewpoint. We perform finite element numerical simulations for deeper indentation depth. An optimal data acquisition spot is selected, which features sufficiently large strain energy density and negligible frictional effect. We then improve two normalized functions mapping an indentation load vs. deflection curve into a strain energy density vs. first invariant curve, the latter of which in turn gives the Yeoh-model constants. The enhanced spherical indentation approach produces the rubber material properties with an average error of less than 3%.