• Title/Summary/Keyword: Friction properties

Search Result 1,518, Processing Time 0.035 seconds

A Study of Dyeing Properties of Cotton Fabrics Under Supercritical CO2 Depending on Dyestuff : by C.I. Disperse orange 155, C.I. Disperse red 167 (초임계 유체 염색용 염료에 따른 면 섬유의 염색 특성 : C.I. Disperse orange 155, C.I. Disperse red 167)

  • Choi, Hyunseuk;Kim, Hunmin;Jeon, Taeyoung
    • Textile Coloration and Finishing
    • /
    • v.34 no.2
    • /
    • pp.93-101
    • /
    • 2022
  • In this study, the dyeing properties of supercritical fluid dyed cotton fabrics were investigated which use two types of dyes, such as C.I. Disperse orange and C.I. Disperse red 167. Dyeing temperature, pressure and leveling time were equally applied at 130 ℃, 250 bar, and 60 minutes with reference to the related literature, and experiments were performed at concentrations of 0.04, 0.1, 0.4 and 0.8 % o.w.f with different concentrations. Dyeability was confirmed through measurement of washing fastness and color coordinate, and a calibration curve of each dye was drawn up and the absorbance of the residual dye was measured to confirm the amount of residual dye and the dye exhaustion rate at the corresponding concentration. As a result of color difference measurement, as the concentration increased, the L* value decreased and the K/S value increased. However, as the concentration increased, the increase in K/S value decreased compared to the input amount, and this tendency was more obvious in C.I. Disperse red 167 than in C.I. Disperse orange 155. The dye exhaustion rate which was calculated by using the amount of residual dye in the pot was also C.I. Disperse orange 155 was 96.16 % and C.I. Disperse red 167 was 94.57 %. However, as the dyeing concentration increased, the dye exhaustion rate decreased, that C.I. Disperse orange was 95.33 % and C.I. Disperse red 167 was 90.63 %. As a result of the washing fastness test for both dyes, dyed samples of which concentrations were 0.4 and 0.8 % o.w.f decreased by 0.5 ~ 1.0 grade. This is predicted because the dye did not completely adhere to the amorphous region of the cotton fiber and the dye simply adsorbed. The fastness to rubbing also maintained at least grade 3-4 up to the 0.1 % o.w.f concentration, but at the concentration of 0.4 % o.w.f or higher, it fell to grade 1 or lower, showing a very poor friction fastness.

A Study on Jointed Rock Mass Properties and Analysis Model of Numerical Simulation on Collapsed Slope (붕괴절토사면의 수치해석시 암반물성치 및 해석모델에 대한 고찰)

  • Koo, Ho-Bon;Kim, Seung-Hee;Kim, Seung-Hyun;Lee, Jung-Yeup
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.5
    • /
    • pp.65-78
    • /
    • 2008
  • In case of cut-slopes or shallow-depth tunnels, sliding along with discontinuities or rotation could play a critical role in judging stability. Although numerical analysis is widely used to check the stability of these cut-slopes and shallow-depth tunnels in early design process, common analysis programs are based on continuum model. Performing continuum model analysis regarding discontinuities is possible by reducing overall strength of jointed rock mass. It is also possible by applying ubiquitous joint model to Mohr-Coulomb failure criteria. In numerical analysis of cut-slope, main geotechnical properties such as cohesion, friction angle and elastic modulus can be evaluated by empirical equations. This study tried to compare two main systems, RMR and GSI system by applying them to in-situ hazardous cut-slopes. In addition, this study applied ubiquitous joint model to simulation model with inputs derived by RMR and GSI system to compare with displacements obtained by in-situ monitoring. To sum up, numerical analysis mixed with GSI inputs and ubiquitous joint model proved to provide most reliable results which were similar to actual displacements and their patterns.

A Fundamental Study on Laboratory Experiments in Rock Mechanics for Characterizing K-COIN Test Site (K-COIN 시험부지 특성화를 위한 암석역학 실내실험 기초 연구)

  • Seungbeom Choi;Taehyun Kim;Saeha Kwon;Jin-Seop Kim
    • Tunnel and Underground Space
    • /
    • v.33 no.3
    • /
    • pp.109-125
    • /
    • 2023
  • Disposal repository for high-level radioactive waste secures its safety by means of engineered and natural barriers. The performance of these barriers should be tested and verified through various aspects in terms of short and/or long-term. KAERI has been conducting various in-situ demonstrations in KURT (KAERI Underground Research Tunnel). After completing previous experiment, a conceptual design of an improved in-situ experiment, i.e. K-COIN (KURT experiment of THMC COupled and INteraction), was established and detailed planning for the experiment is underway. Preliminary characterizations were conducted in KURT for siting a K-COIN test site. 15 boreholes with a depth of about 20 m were drilled in three research galleries in KURT and intact rock specimens were prepared for laboratory tests. Using the specimens, physical measurements, uniaxial compression, indirect tension, and triaxial compression tests were conducted. As a result, specific gravity, porosity, elastic wave velocities, uniaxial compressive strength, Young's modulus, Poisson's ratio, Brazilian tensile strength, cohesion, and internal friction angle were estimated. Statistical analyses revealed that there did not exist meaningful differences in intact rock properties according to the drilled sites and the depth. Judging from the uniaxial compressive strength, which is one of the most important properties, all the specimens were classified as very strong rock so that mechanical safety was secured in all the regions.

A study on the cold heading process design optimization by taguchi method (다구찌법을 활용한 헤딩공정설계 최적화 연구)

  • Joon Hwang;Jin-Hwan Won
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.33 no.6
    • /
    • pp.216-225
    • /
    • 2023
  • This paper describes the finite element analysis and die design change of cold heading punching process to increase the cold forging tool life and reduce the tool wear and stress concentration. Through this study, the optimization of punch tool design has been studied by an analysis of tool stress and wear distribution to improve the tool life. Plastic deformation analysis was carried out in order to understand the cold heading process between tool and workpiece stress distribution. Cold heading punch die design was set up to each process with different four types analysis progressing, the cold heading punch dies shapes with combination of point angle and punch edge corner radius shapes of cold forging dies, punch die material properties and frictional coefficient. The design parameters of point angle and corner radius of punch die geometry, die material properties and frictional coefficient were selected to apply optimization with the DoE (design of experiment) and Taguchi method. DoE and Taguchi method was performed to optimize the cold heading punch die design parameters optimization for bolt head cold forging process, it was possible to expect an reduce the cold heading punch die wear to the 37 % compared with current using cold heading punch in the shop floor.

Physical and Mechanical Properties on Ipseok-dae Columnar Joints of Mt. Mudeung National Park (무등산국립공원 입석대 주상절리대에 대한 물리역학적 특성)

  • Ko, Chin-Surk;Kim, Maruchan;Noh, Jeongdu;Kang, Seong-Seung
    • The Journal of Engineering Geology
    • /
    • v.26 no.3
    • /
    • pp.383-392
    • /
    • 2016
  • This study is to evaluate the physical and mechanical properties on the Ipseok-dae columnar joints of Mt. Mudeung National Park. For these purposes, physical and mechanical properties as well as discontinuity property on the Mudeungsan tuff, measurement of vibration and local meteorology around columnar joints, and ground deformation by self-weight of columnar joints were examined. For the physical and mechanical properties, average values were respectively 0.65% for porosity, 2.69 for specific gravity, 2.68 g/cm3 for density, and 2411 m/s for primary velocity, 323 MPa for uniaxial compressive strength, 81 GPa Young's modulus, and 0.25 for Poisson's ratio. For the joint shear test, average values were respectively 3.15 GPa/m for normal stiffness, 0.38 GPa/m for shear stiffness, 0.50 MPa for cohesion, and 35° for internal friction angle. The JRC standard and JRC chart was in the range of 4~6, and 1~1.5, respectively. The rebound value Q of silver schmidt hammer was 57 (≒ 90 MPa). It corresponds 20% of the uniaxial compressive strength of intact rock. The maximum vibration value around the Ipseok=dae columnar joints was in the range of 0.57 PPV (mm/s)~2.35 PPV (mm/s). The local meteorology of surface temperature, air temperature, humidity, and wind on and around columnar joints appeared to have been greatly influenced the weather on the day of measurement. For the numerical analysis of ground deformation due to its self-weight of the Ipseok-dae columnar joints, the maximum displacement of the right ground shows when the ground distance is approximately 2 m, while drastically decreased by 2~4 m, thereafter was insignificant. The maximum displacement of the middle ground shows when the ground distance is approximately 0~2 m, while drastically decreased by 3~10 m, thereafter was insignificant. The maximum displacement of the left ground shows when the ground distance is approximately 5~6 m, while drastically decreased by 6~10 m, thereafter was insignificant.

Investigation of Viscoelastic Properties of EPDM/PP Thermoplastic Vulcanizates for Reducing Innerbelt Weatherstrip Squeak Noise of Electric Vehicles (전기차 인너벨트 웨더스트립용 EPDM/PP Thermoplastic Vulcanizates 재료설계인자에 따른 점탄성과 글라스 마찰 소음 상관관계 연구)

  • Cho, Seunghyun;Yoon, Bumyong;Lee, Sanghyun;Hong, Kyoung Min;Lee, Sang Hyun;Suhr, Jonghwan
    • Composites Research
    • /
    • v.34 no.3
    • /
    • pp.192-198
    • /
    • 2021
  • Due to enormous market growing of electric vehicles without combustion engine, reducing unwanted BSR (buzz, squeak, and rattle) noise is highly demanded for vehicle quality and performance. Particularly, innerbelt weatherstrips which not only block wind noise, rain, and dust from outside, but also reduce noise and vibration of door glass and vehicle are required to exhibit high damping properties for improved BSR performance of the vehicle. Thermoplastic elastomers (TPEs), which can be recycled and have lighter weight than thermoset elastomers, are receiving much attention for weatherstrip material, but TPEs exhibit low material damping and compression set causing frictional noise and vibration between the door glass and the weatherstrip. In this study, high damping EPDM (ethylene-propylene-diene monomer)/PP (polypropylene) thermoplastic vulcanizates (TPV) were investigated by varying EPDM/PP ratio and ENB (ethylidene norbornene) fraction in EPDM. Viscoelastic properties of TPV materials were characterized by assuming that the material damping is directly related to the viscoelasticity. The optimum material damping factor (tanδ peak 0.611) was achieved with low PP ratio (14 wt%) and high ENB fraction (8.9 wt%), which was increased by 140% compared to the reference (tanδ 0.254). The improved damping is believed due to high fraction of flexible EPDM chains and higher interfacial slippage area of EPDM particles generated by increasing ENB fraction in EPDM. The stick-slip test was conducted to characterize frictional noise and vibration of the TPV weatherstrip. With improved TPV material damping, the acceleration peak of frictional vibration decreased by about 57.9%. This finding can not only improve BSR performance of electric vehicles by designing material damping of weatherstrips but also contribute to various structural applications such as urban air mobility or aircrafts, which require lightweight and high damping properties.

PREPARATION OF AMORPHOUS CARBON NITRIDE FILMS AND DLC FILMS BY SHIELDED ARC ION PLATING AND THEIR TRIBOLOGICAL PROPERTIES

  • Takai, Osamu
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.3-4
    • /
    • 2000
  • Many researchers are interested in the synthesis and characterization of carbon nitride and diamond-like carbon (DLq because they show excellent mechanical properties such as low friction and high wear resistance and excellent electrical properties such as controllable electical resistivity and good field electron emission. We have deposited amorphous carbon nitride (a-C:N) thin films and DLC thin films by shielded arc ion plating (SAIP) and evaluated the structural and tribological properties. The application of appropriate negative bias on substrates is effective to increase the film hardness and wear resistance. This paper reports on the deposition and tribological OLC films in relation to the substrate bias voltage (Vs). films are compared with those of the OLC films. A high purity sintered graphite target was mounted on a cathode as a carbon source. Nitrogen or argon was introduced into a deposition chamber through each mass flow controller. After the initiation of an arc plasma at 60 A and 1 Pa, the target surface was heated and evaporated by the plasma. Carbon atoms and clusters evaporated from the target were ionized partially and reacted with activated nitrogen species, and a carbon nitride film was deposited onto a Si (100) substrate when we used nitrogen as a reactant gas. The surface of the growing film also reacted with activated nitrogen species. Carbon macropartic1es (0.1 -100 maicro-m) evaporated from the target at the same time were not ionized and did not react fully with nitrogen species. These macroparticles interfered with the formation of the carbon nitride film. Therefore we set a shielding plate made of stainless steel between the target and the substrate to trap the macropartic1es. This shielding method is very effective to prepare smooth a-CN films. We, therefore, call this method "shielded arc ion plating (SAIP)". For the deposition of DLC films we used argon instead of nitrogen. Films of about 150 nm in thickness were deposited onto Si substrates. Their structures, chemical compositions and chemical bonding states were analyzed by using X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy and infrared spectroscopy. Hardness of the films was measured with a nanointender interfaced with an atomic force microscope (AFM). A Berkovich-type diamond tip whose radius was less than 100 nm was used for the measurement. A force-displacement curve of each film was measured at a peak load force of 250 maicro-N. Load, hold and unload times for each indentation were 2.5, 0 and 2.5 s, respectively. Hardness of each film was determined from five force-displacement curves. Wear resistance of the films was analyzed as follows. First, each film surface was scanned with the diamond tip at a constant load force of 20 maicro-N. The tip scanning was repeated 30 times in a 1 urn-square region with 512 lines at a scanning rate of 2 um/ s. After this tip-scanning, the film surface was observed in the AFM mode at a constant force of 5 maicro-N with the same Berkovich-type tip. The hardness of a-CN films was less dependent on Vs. The hardness of the film deposited at Vs=O V in a nitrogen plasma was about 10 GPa and almost similar to that of Si. It slightly increased to 12 - 15 GPa when a bias voltage of -100 - -500 V was applied to the substrate with showing its maximum at Vs=-300 V. The film deposited at Vs=O V was least wear resistant which was consistent with its lowest hardness. The biased films became more wear resistant. Particularly the film deposited at Vs=-300 V showed remarkable wear resistance. Its wear depth was too shallow to be measured with AFM. On the other hand, the DLC film, deposited at Vs=-l00 V in an argon plasma, whose hardness was 35 GPa was obviously worn under the same wear test conditions. The a-C:N films show higher wear resistance than DLC films and are useful for wear resistant coatings on various mechanical and electronic parts.nic parts.

  • PDF

A Study on the Shear Characteristics of the Decomposed Granite Soils Using Direct Shear Test (직접전단시험(直接剪斷試驗)에 의한 화강토(花崗土)의 전단특성(剪斷特性)에 관(關)한 연구(硏究))

  • Lee, Dal Won;Kang, Yea Mook;Cho, Seong Seup
    • Korean Journal of Agricultural Science
    • /
    • v.13 no.2
    • /
    • pp.227-242
    • /
    • 1986
  • This paper describes the observed behavior in the direct shear test on decomposed granite soil having the complicate engineering properties at various different levels of factors. The objectives of this study were to investigate the characteristics of the decomposed granite soil under controlled various moisture content, dry density, strain rate and soaking which give influence to the shear strength. The results were summarized as follows; 1. The shear strength was decreased remarkably with the increasing of moisture contents of A and B soil were 5-10% and 15-20% respectively. 2. Cohesion and angle of internal friction were decreased with the increasing of moisture content and increased with the increasing of dry density. 3. The shear strength was increased with the increasing of normal stress and volume change was decreased on the whole. The shear strength was generally increased with the increasing of the strain rate. 4. As dry density increases, A-soil shows the progressive failure and the decrease of volume change while B-soil shows the initial failure and the increase of volume change. 5. The relationships between the soaked and unsoaked specimens were as follows ; ${\tau}_f=0.1009+1.026{{\tau}_f}^*$ (A-soil), ${\tau}_f=0.1586+0.8005{{\tau}_f}^*$ (B-soil) 6. Angle of internal friction of the direct shear test shows larger value than that of the triaxial compression test. All effective stress path was nearly similar.

  • PDF

Effect of long-term organic matter application on physico-chemical properties in rice paddy soil -2. The effect of some physical properties of paddy field by the long-term application of rice straw and compost (논토양(土壤)의 이화학적(理化學的) 성질(性質)에 미치는 유기물(有機物)의 연용효과(蓮用效果) -II. 생고(生藁) 및 퇴비(堆肥) 연용(蓮用)이 논토양(土壤)의 몇가지 물리적(物理的) 성질(性質)에 미치는 영향(影響))

  • Yoo, Chul-Hyun;Kim, Jong-Gu;Park, Keong-Ho;Kim, Seong-Jo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.21 no.4
    • /
    • pp.373-379
    • /
    • 1988
  • This experiment was carried out to investigate the effects of long-term applications of rice straw and compost on the physical and mechanical properties of paddy fields and the yearly variation of rice yield in Fluvio-Marine plain of Jeonbug series. Amounts of rice straw and compost applied in this experiment were 500kg/10a, 1,000kg/10a respectively, and the nitrogen levels were 0, 15 and 20kg/10a. This experiment were continued for 9 years from 1979 to 1987. The results are summarized as follows: 1. Clay and silt ratios were decreased but versa in sand ratio, by the long-term application of rice straw and compost. 2. Bulk density in the long-term application of organic matter was lower in surface soil of non-application than nitrogen application (15kg/10a) and in rice straw than compost. 3. Solid ratio went down, but liquid and gaseous ratio went up especially, by organic matter application liquid ratio were increased by compost and gaseous ratio were increased by in rice straw. 4. Aggregates of bigger than 2mm were increased by long-term application of organic matter, and the effects was better in rice straw than compost. Accumulative aggregate of 2mm was 66.5% in nitrogen of 15kg/ 10a with rice straw, which showed the increase of 9.1% in comparison with the non-application of nitrogen and organic matter. 5. Liquid limit, plastic limit and plastic index were high in order of rice straw, compost and control, and liquid index was lower in compost than in rice straw. 6. Cole value was higher in vertical than horizontal and highest in the application of rice straw with nitrogen of 15kg/10a. Cone and shearing resistance were lowest in the application of rice straw with nitrogen. In total vertical pressure friction was higher in the long-term application of organic matter than control. 7. The change of yield index was higher in the long-term application of compost than rice straw in non-nitrogen and it showed the yearly competitive variation between the long-term application of compost and rice straw in nitrogen of 10kg/10a. In nitrogen application of 20kg/10a, it was increased from 6th year by rice straw application.

  • PDF

Effect of Milling Degree on the Physicochemical and Sensory Quality of Sogokju (도정도에 따른 소곡주의 품질 및 기호도 변이)

  • Chun, A-Reum;Kim, Dae-Jung;Yoon, Mi-Ra;Oh, Sea-Kwan;Choi, Im-Soo;Hong, Ha-Cheol;Kim, Yeon-Gyu
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.41 no.1
    • /
    • pp.136-142
    • /
    • 2012
  • Sogokju, a Korean glutinous rice wine and one of the oldest Korean traditional wines, is famous for its unique taste acquired from a 100-day incomplete fermentation process. This study investigated the effects of the degree of rice milling on the physicochemical and sensory characteristics of Sogokju. It evaluated the physicochemical characteristics, pasting and color properties, and structural properties of starch using four different degrees of milled rice (Oryza sativa L.) cultivar Dongjinchalbyeo. Samples of brown rice with milling yields of 92%, 84%, 76%, and 68% were produced using both abrasive and friction whiteners. This study showed that the protein, lipid, and ash content of milled rice decreased as the degree of milling increased. The lower hardness of the kernel below milling yield 92% suggested that milling may be related to the lower protein content of the kernel. The pasting curve showed a significant increase in viscosity properties as the degree of milling increased. This is due to the decrease in protein and lipid content, the increase in starch content, and the difference in amylopectin chain-length distribution. Further milling of white rice, based on 92% milling yield, had an effect on the amylopectin chain-length distribution due to the degree of polymerization (DPn) of 37~60. The long chain of amylopectin also contributed to the viscosity. The increase in the degree of milling decreased the glucose and total sugar content of Sogokju. However, it increased the total acidity of Sogokju. Moreover, the lightness of Sogokju decreased while its yellowness increased. These results indicate that the degree of milling can alter the taste and color of Sogokju. The sensory evaluation showed that the increase in the degree of milling decreased consumer preference for Sogokju. The sensory score for Sogokju was positively correlated with its brix degree, glucose content, pH, and protein content of raw rice.