• 제목/요약/키워드: Friction properties

Search Result 1,518, Processing Time 0.03 seconds

A Study on the Performance Test of NA-Q Additive Oil by Using an Engine Dynamometer(Part I) - Test of the Reference Oil - (엔진 다이나모메터를 이용한 NA-Q첨가 윤활유의 성능시험 연구(제1보) - 기준 윤활유의 시험 -)

  • 정동윤;한흥구;한희동
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.347-352
    • /
    • 2000
  • Before investigating the performance of NA-Q additive oil, we have studied the properties of the commercial reference oil by using an engine dynamometer. Experimemts were conducted for 300 hours with 2,950rpm and 22kw and every 50 hours the used oil was sampled for analyzing its physical and chemical propreties. The reference oil shows stable but slightly increasing viscosities during the experiment. It has good agreements with the change of its TAN and TBN. Friction coefficients and anti-wear characteristics are compared with its ZDTP depletion factor and the diameters of wear scar. The concentrations of metal particles are analyzed with the results of ICP and spectrometer, However it is found that the concentrations by filtration method shows large difference with those by standard method in spectrometer.

  • PDF

Materials Properties of Rapidly Solidified Mg-Zn-Y Alloys (급속응고 Mg-Zn-Y 합금의 성형특성)

  • Kim, Taek-Soo
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.448-449
    • /
    • 2008
  • Light Mg alloy stands on the center of investigation due to the high potential of industrial application not only to the structural, but also to the functional fields. However, the intrinsic low strength and corrosion resistance have limited to extend its industrial use. In order to overcome the disadvantage, various attempts have been come to the modification of composition, resulting in finding Mg-Zn-Y alloys. The cast Mg-Zn-Y alloy leads to the high strength and hardness, low friction coefficient and low interfacial energy in both the ambient and elevated temperature.

  • PDF

Optimum Design of Linear Motor by Using Taguchi Method (다구찌 기법을 이용한 선형 모터의 최적 설계)

  • Seol, Jin-Soo;Lee, Woo-Young;Rim, Kyung-Hwa
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.192-195
    • /
    • 2005
  • Nanometer operating linear motor is difficult to control the nano-positioning because of the vibration between structures changing of mechanical friction force happened by properties of the vibration and heat caused by operating of a mover. Therefore, it is required to analysis the vibration and heat about a mover. In this paper, we will analyze the property of vibration through analyzing by using FEM a mover of linear motor developed in the non-load situation and suggest the direction of optimal design about a mover by using method of DOE, also try to find the solution to operate the linear motor stabilized through the reducing weight of mover considering the vibration.

  • PDF

Basic Science of the Articular Cartilage (관절 연골에 대한 기초 과학)

  • Kim, Jae-Hwa;Ahn, Chang-Soo
    • Journal of the Korean Arthroscopy Society
    • /
    • v.13 no.3
    • /
    • pp.189-192
    • /
    • 2009
  • Although the articular cartilage is only a few milimiters thick, it has surprising stiffness to compression, exceptional ability to distribute load minimizing peak stress on subchondral bone and great durability. In many instances, it help to preserve normal joint function for more than 80 years. Varying in thickness, cell density, matrix composition, mechanical properties even within the same joint, it provides low-friction and pain free-motion. However, it lacks a blood or lymphatic supply and neurological elements are absent. It shows limited healing potential because of poor regenerative capacity.

  • PDF

Interdiffusion at Interfaces of Polymers with Dissimilar Physical Properties

  • 정재명;박형석
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.7
    • /
    • pp.720-729
    • /
    • 1997
  • The interface between two different polymers is characterized theoretically by using a model. This model is based on the assumption that the monomeric friction coefficients of the two polymers are identical but a strong function of the matrix composition. This model predicts that the concentration profiles are highly asymmetric with substantial swelling of the slower-diffusing component by the faster component. To predict the behavior of interdiffusion, three quantities are used: distance of interface Z*(t) due to the swelling, interfacial width W(t) which is most sensitive to the detailed composition profiling, and mass transport M(t) due to interdiffusion. It is found that the more dissimilar polymer pairs, the faster the movement of the interface, the quicker its interfacial width saturates to a limiting value and the slower its mass transport. These results are in qualitative agreement with some experiments.

Impedance Control of Backdrivable Hydraulic Actuation Systems with Explicit Disturbance Estimation (직접 외란 추정을 통한 역구동성 유압 구동 시스템의 임피던스 제어)

  • Yoo, Sunkyum;Chung, Wan Kyun
    • The Journal of Korea Robotics Society
    • /
    • v.14 no.4
    • /
    • pp.348-356
    • /
    • 2019
  • The backdrivable servovalve is a desirable component for force and interaction control of hydraulic actuation systems because it provides direct force generation mechanical impedance reduction by its own inherent backdrivability. However, high parametric uncertainty and friction effects inside the hydraulic actuation system significantly degrade its advantage. To solve this problem, this letter presents a disturbance-adaptive robust internal-loop compensator (DA-RIC) to generate ideal interactive control performance from the backdrivable-servovalve-based system. The proposed control combines a robust internal-loop compensator structure (RIC) with an explicit disturbance estimator designed for asymptotic disturbance tracking, such that the controlled system provide stable and ideal dynamic behavior for impedance control, while completely compensating the disturbance effects. With the aid of a backdrivable servovalve, we show that the proposed control structure can be implemented based on a simplified nominal model, and the controller enables implementation without accurate knowledge of the target system parameters and disturbances. The performance and properties of the proposed controller are verified by simulation and experiments.

Optimization of Two-Step Cold Drawing for Upper Arch-Shape Solid Type Austenitic Stainless Steel (상단 아치 형상 중실 오스테나이트계 스테인리스강의 2단 인발 공정 최적화)

  • Bae, S.J.;Kim, J.H.;Hong, S.B.;Hong, S.K.;Namkung, J.;Lee, K.S.
    • Transactions of Materials Processing
    • /
    • v.31 no.6
    • /
    • pp.394-403
    • /
    • 2022
  • In the automotive industry, cold-drawn austenitic stainless steel is commonly used to handle high fuel pressures in gasoline direct injection (GDI) engines. In this study, we analyzed the effects of main process variables such as cross-sectional shape, drawing speed and friction coefficient on the microstructure, hardness and residual stress of the drawn material in the two-step cold drawing process. By changing the cross-sectional shape in the first-step cold drawing, the possibility of improving the shape accuracy or physical properties of the finally cold-drawn fuel rail pressure sensor product was investigated.

Development of the Measurement System for Evaluating Mechanical Properties of Nano-diamond Coated Film (나노 다이아몬드 코팅박막의 기계적 특성 평가를 위한 계측시스템의 개발)

  • Kweon, Hyun Kyu;Lee, So Jin;Kweon, Yong Min
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.1
    • /
    • pp.25-31
    • /
    • 2019
  • In this study, a new adhesion evaluating equipment and data processing methods were developed to overcome some limitations of existing evaluating equipment. Nano-diamond coated tool is a specimen of experiment. When applying frictional force and shear force on the specimen by a rotating polishing pad, delamination occurs at a moment. During each experiment, the vibration, load, and torque is obtained by accelerometer, loadcell and torque s+ kpensor. Frictional force and coefficient of friction are obtained by calculating torque and load. Based on FFT transformation, acceleration is processed and analyzed. As a result, the moment of delamination and the load at that time can be detected by the new developed equipment and measurement system. Finally, we call this load as an Adhesion force.

Experimental research on dynamic characteristics of frozen clay considering seasonal variation

  • Xuyang Bian;Guoxin Wang;Yuandong Li
    • Geomechanics and Engineering
    • /
    • v.36 no.4
    • /
    • pp.391-406
    • /
    • 2024
  • In order to study the soil seasonal dynamic characteristics in the regions with four distinct seasons, the soil dynamic triaxial experiments were conducted by considering the environmental temperature range from -30℃ to 30℃. The results demonstrate that the dynamic soil properties in four seasons can change greatly. Firstly, the dynamic triaxial experiments were performed to obtain the dynamic stress-strain curve, elastic modulus, and damping ratio of soil, under different confining pressures and temperatures. Then, the experiments also obtain the dynamic cohesion and internal friction angle of the clay under the initial strain, and the changing rule was summarized. Finally, the results show that the dynamic elastic modulus and dynamic cohesion will increase significantly when the clay is frozen; as the temperature continues to decrease, this increasing trend will gradually slow down, and the dynamic damping ratio will go down when the freezing temperature decreases. In this paper, the change mechanism is objectively analyzed, which verifies the reliability of the conclusions obtained from the experiment.

Intraoral ageing of aligners and attachments: Adverse effects on clinical efficiency and release of biologically-active compounds

  • Theodore Eliades;George Eliades
    • The korean journal of orthodontics
    • /
    • v.54 no.4
    • /
    • pp.199-209
    • /
    • 2024
  • The clinical application of aligners is accompanied by the ageing of the polymer appliances and the attachments used, which may result in inefficiency in reaching the predicted range of tooth movement, and release of compounds and microplastics in the oral cavity as a result of the friction, wear and attrition of the aligner and composite attachment. The purpose of this review is to present the mechanism and effects of in vivo ageing; describe the hydrolytic degradation of aligners and enzymatic degradation of composite attachments; examine the ageing pattern of aligners in vivo, under actual clinical scenarios; and identify a link to the discrepancy between predicted and actual clinical outcome. Lastly, strategies to deal with three potentially critical issues associated with the use of aligners, namely the necessity of weekly renewal, the dissimilar mechanical properties of aligner and attachment resulting in wear and plastic deformation of the aligner, and the development of integuments and biofilms with microbial colonization of the appliance, are discussed.