• Title/Summary/Keyword: Friction pad

Search Result 235, Processing Time 0.027 seconds

The study on the 4-dof friction induced self-oscillation system with friction coefficient of velocity and pressure (속도 압력항의 마찰 기인 4 자유도계 시스템의 자려진동에 대한 연구)

  • Joe, Yong-Goo;Shin, Ki-Hong;Lee, Jung-Yun;Oh, Jae-Eung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.255-261
    • /
    • 2002
  • A four-degree of freedom model is suggested to understand the basic dynamical behaviors of the normal interaction between two masses of the friction induced normal vibration system. The two masses may be considered as the pad and the disk of the brake. The phase space analysis is performed to understand complicated in-plane dynamics of the non-linear model. Attractors in the phase space are examined for various conditions of the parameters. In certain conditions, the attractor becomes a limit cycle showing the stick-slip phenomena. In this paper, on the basis of the in-plane motion not only the existence of the limit cycle but also the size of the limit cycle is examined o demonstrate the non-linear dynamics that leads the unstable state and then the normal vibration is investigated as the state of the in-plane motion For only one case of the system frequency(two masses with same natural frequencies), the propensity of the normal vibration is discussed in detail. The results show an important fact that it may be not effective when too much damping is present in the only one part of the masses.

  • PDF

Seismic Performance Test of a Steel Frame with Multi-action Hybrid Dampers (다중거동 복합형 감쇠장치를 적용한 철골골조의 내진성능실험)

  • Roh, Ji Eun;Heo, Seok Jae;Lee, Sang Hyun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.23 no.1
    • /
    • pp.1-8
    • /
    • 2019
  • In this study, the effectiveness of a multi-action hybrid damper (MHD) composed of lead rubber bearing (LRB) and friction pad was verified in terms of seismic performance improvement of a frame structure. The LRB and the friction elements are connected in series, so the LRB governs the intial small deformation and the friction determines large deformation behavior. Cyclic loading tests were conducted by using a half scale steel frame structure with the MHD, and the results indicated that the structure became to have the stable trilinear hysteresis with large initial stiffness and first yielding due to the LRB, and the second yielding due to the friction. The MHD could significantly increase the energy dissipation capacity of the structure and the hysteresis curves obtained by tests were almost identical to the analytically estimated ones.

A Study on Wear loss of Motorcycle Brake Disk by Response Surface Method (반응 표면법을 이용한 이륜자동차 브레이크 디스크 마멸량에 관한 연구)

  • Jeon, H.Y.
    • Journal of Power System Engineering
    • /
    • v.12 no.3
    • /
    • pp.44-49
    • /
    • 2008
  • In this research, I would like to choose sliding distance and ventilated hole number which affect to the amount of wear of disk and pad as experiment conditions of 'the amount of wear' through wear test of motorcycle brake disk. Also, I analyze the amount of wear according to the variation of coefficient of friction by using design of experiment that is being widely used in diverse areas. With the tests of least, I present the correlation of each experiment condition. Therefore, I analyzed the variation of the amount of wear of disk and pad according to test factors such as ventilated hole number, applied load, sliding speed, and sliding distance in wear test of motorcycle brake disk by applying the design of experiment. Also, I analyzed quantitatively the influence of test factors through Taguchi Robust experimental design, response surface and examined the most suitable level and estimation of the amount of wear of disk. From these, I reached the following conclusions. response surface design, mathematical model was constructed about amount of wear of disk and pad. The amount of wear that decrease according to increase of ventilated hole number, and it's increase according to Increase of applied load, sliding speed, and sliding distance.

  • PDF

A Study on Temperature Field of Solid Disc Brake based on Thermal-mechanical Coupled Model (열-기계적 복합 모델을 기반으로 한 Solid 디스크 브레이크의 온도장에 관한 연구)

  • Wu, Xuan;Hwang, Pyung;Jeon, Young-Bae
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.396-401
    • /
    • 2008
  • The disc-pad brake system is an important part of automobile safety system. During braking, the kinetic energy and potential energies of a moving vehicle are converted into the thermal energy through frictional heat between the brake disc and the pads. Most of the thermal energy dissipated through the brake disc. The temperature could be exceed the critical value for a given material, which leads to undesirable effects, such as the brake fade, premature wear, brake fluid vaporization, bearing failure, thermal cracks, and thermallyexcited vibration. The object of the present study is to investigate temperature field and temperature variation of brake disc and pad during single brake. The brake disc is decelerated at the initial speed with constant acceleration, until the disc comes to stop. The pad-disc brake assembly is built by 3D model with the appropriate boundary condition. In the simulation process, the mechanical loads are applied to the thermomechanical coupling analysis in order to simulate the process of heat produced by friction.

  • PDF

A Study on Wear Life Prediction of Disk Brake Pads (디스크 브레이크 패드 수명 예측에 관한 연구)

  • 여태인
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.4
    • /
    • pp.199-205
    • /
    • 2002
  • This paper presents a numerical technique to analyze wear life of automotive disk brake pad, where FFT-FEM method is adopted to determine the transient temperature distribution of the disk surface. A specimen ova frictional material is tested on a small scale brake dynamometer to find the dependency of the wear rate on temperature change, from which and the temperature analysis results, given the wear test mode, wear behavior of the pad material fur the vehicle can be predicted. Numerical examples show the predicted wear life of the vehicle coincides with the manufacture's recommended time interval for replacing the pads.

Development of Multiple CMP Monitoring System for Consumable Designs

  • Park, Sun-Joon;Park, Boum-Young;Kim, Sung-Ryul;Jeong, Hae-Do;Kim, Hyoung-Jae
    • Transactions on Electrical and Electronic Materials
    • /
    • v.8 no.1
    • /
    • pp.11-14
    • /
    • 2007
  • Consumables used in Chemical Mechanical Polishing (CMP) have been played important role to improve quality and productivity. Since the properties of consumables constantly change with various reasons, such as shelf time, manufactured time, lot to lot variation from supplier and so on, CMP results are not constant during the process. Also, CMP process results are affected by multiple sources from wafer, conditioner, pad and slurry. Therefore, multiple sensing systems are required to monitor CMP process variation. In this paper, the authors focus on development of monitoring system for CMP process which consist of force, temperature and displacement sensor to measure the signal from CMP process. With monitoring systems mentioned above, complex CMP phenomena can be investigated more clearly.

Modal Analysis of Brake Pads with Various Slot Types (디스크 브레이크 패드의 마찰재 슬롯 형상에 따른 진동 모드)

  • 유동호;박경환
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11a
    • /
    • pp.325-328
    • /
    • 2001
  • Disc brake squeal is caused by mechanical vibrations generated from friction force excitations exerted by the pad on the rotor. In order to understand the origin of these vibrations and to speed up the design, the characterization of the individual brake system components is desirable. In this paper, the results of modal analysis are presented in terms of several slot-type with free-free boundary conditions. Special attention is paid to variations of the natural frequency at each vibration mode as the result of modifying slot pattern.

  • PDF

An Analysis on the Material Removal Mechanism of Chemical-Mechanical Polishing Process Part I: Coupled Integrated Material Removal Modeling (화학-기계적 연마 공정의 물질제거 메커니즘 해석 Part I: 연성 통합 모델링)

  • Seok, Jong-Won;Oh, Seung-Hee;Seok, Jong-Hyuk
    • Journal of the Semiconductor & Display Technology
    • /
    • v.6 no.2 s.19
    • /
    • pp.35-40
    • /
    • 2007
  • An integrated material removal model considering thermal, chemical and contact mechanical effects in CMP process is proposed. These effects are highly coupled together in the current modeling effort. The contact mechanics is employed in the model incorporated with the heat transfer and chemical reaction mechanisms. The mechanical abrasion actions happening due to the mechanical contacts between the wafer and abrasive particles in the slurry and between the wafer and pad asperities cause friction and consequently generate heats, which mainly acts as the heat source accelerating chemical reaction(s) between the wafer and slurry chemical(s). The proposed model may be a help in understanding multi-physical interactions in CMP process occurring among the wafer, pad and various consumables such as slurry.

  • PDF

Parameter Investigation of Burr Formation on Sheet Metal Shearing Process (미세박판 전단시의 버 발생 인자에 관한 연구)

  • Kim H. Y.;Kim B. H.;Shin Y. S.;Oh S. I.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.05a
    • /
    • pp.231-234
    • /
    • 2001
  • Shearing, including blanking, trimming, piercing, etc, is one of the most frequently used processes in sheet metal manufacturing. In this paper, an individual set of tooling with an in-die sensor was designed and precisely fabricated to carry out the experiment for the shearing process investigation. Through various experiments, it has been examined the influence of process parameters such as clearance, edge material properties and pad configuration. Since the tension between the part and the scrap increases when the clearance increases, the clearance should be selected properly in order to reduce the burr height. Also removal of the lower pad makes the sheared surface worse and the shearing system unstable. The shearing force increases when the clearance decreases and the friction of the tooling material decreases. Dynamic reaction force is also important to obtain the fine sheared surfaces.

  • PDF

The Pad Recovery as a function of Diamond Shape on Diamond Disk for Metal CMP (Metal CMP 용 컨디셔너 디스크 표면에 존재하는 다이아몬드의 형상이 미치는 패드 회복력 변화)

  • Kim, Kyu-Chae;Kang, Young-Jae;Yu, Young-Sam;Park, Jin-Goo;Won, Young-Man;Oh, Kwang-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.13 no.3 s.40
    • /
    • pp.47-51
    • /
    • 2006
  • Recently, CMP (Chemical Mechanical Polishing) is one of very important processing in semiconductor technology because of large integration and application of design role. CMP is a planarization process of wafer surface using the chemical and mechanical reactions. One of the most important components of the CMP system is the polishing pad. During the CMP process, the pad itself becomes smoother and glazing. Therefore it is necessary to have a pad conditioning process to refresh the pad surface, to remove slurry debris and to supply the fresh slurry on the surface. A conditioning disk is used during the pad conditioning. There are diamonds on the surface of diamond disk to remove slurry debris and to polish pad surface slightly, so density, shape and size of diamond are very important factors. In this study, we characterized diamond disk with 9 kinds of sample.

  • PDF