• 제목/요약/키워드: Friction losses

검색결과 112건 처리시간 0.034초

연료 주입형 마찰 조정제가 엔진 마찰 및 연비에 미치는 영향에 대한 실험적 연구 (An Experimental Study for the Effect of Friction Modifier Added in Fuel on the Engine Friction and Fuel Economy)

  • 조명래;강경필;오대윤;최재권
    • Tribology and Lubricants
    • /
    • 제18권2호
    • /
    • pp.133-137
    • /
    • 2002
  • This paper reports on the effect of fuel additive friction modifier on the engine friction and fuel consumption. The test of engine friction and fuel consumption is performed for the each oils and fuels. The TFA4724 friction modifier is added in test oil and fuel. The test results show that total engine friction is a decrease of 0.7-2.0% compared with base fuel, and fuel consumption is improved by 0.3%. The amount of friction reduction corresponds to that of boundary friction loss term in ring-pack friction losses. From the results, it is thought that the additive friction modifier in the fuel is effective to reduce the boundary friction in ring-pack.

장기체공 소형 UAV용 엔진 성능시험 및 시뮬레이션 (Test and Simulation of An Engine for Long Endurance Miniature UAVs)

  • 신영기;장성호;구삼옥
    • 한국항공우주학회지
    • /
    • 제33권5호
    • /
    • pp.99-105
    • /
    • 2005
  • 장기체공 소형 무인기 실용화를 위해서는 연료소비율이 우수한 엔진 개발이 매우 중요하다. 본 연구에서는 4행정 글로우 플러그 엔진을 가솔린 엔진으로 개조하였다. 고공에서의 엔진 성능예측에 필요한 시뮬레이션 프로그램 개발을 위하여 지상에서 엔진 성능을 측정하였다. 측정결과 고속에서 윤활부족으로 인하여 엔진 마찰력이 급격히 증가함을 알 수 있었다. 지상 시험결과를 토대로 개발된 엔진성능 예측 프로그램에 의하면 고도가 상승할수록 연료소비율이 악화되는데 이는 윤활부족에 의한 마찰력 손실은 고도에 관계없이 거의 일정하기 때문이다.

냉각수 및 오일의 온도에 따른 연비향상에 관한 실험적 연구 (An Experimental Study on the Improvement of Fuel Economy according to Coolant and Oil Temperature)

  • 조원준;김형익;이기형
    • 한국자동차공학회논문집
    • /
    • 제17권1호
    • /
    • pp.72-79
    • /
    • 2009
  • Recently, the internal combustion engines have focused on reducing the $CO_2$ gas in order to cope with severe regulations for fuel economy. Therefore, various new technologies have been developed. Among them, cooling system is spotlighted because it has great effect on fuel economy. In this study, we measured the friction losses of engine parts according to engine speed and oil temperature. We also obtained optimized oil temperature which has the minimum friction losses. Then, we selected optimized oil temperature range and gave informations of friction losses for each engine parts. In addition, we analyzed relationship between coolant temperature and oil temperature by using engine performance test system. From this experiment, we obtained the database for relationship between coolant temperature and oil temperature. Then, we found the optimal temperature about engine oil. We analyzed BSFC and exhaust emissions by controlling the high coolant temperture. If we controlled coolant temperature more higher, BSFC has a little difference but exhaust emissions such as THC and CO have reduced. By using these experimental results, we predicted that IC engine have more low fuel consumption and exhaust emissions by optimized cooling control strategy.

주변환경을 고려한 상수관망의 관 마찰손실계수 산정 (Predicting Flow Resistance Coefficients in Water Supply Mains)

  • 손광익
    • 물과 미래
    • /
    • 제29권4호
    • /
    • pp.223-231
    • /
    • 1996
  • 보다 효율적인 관로운영에 필수적인 통수능 변화 및 영향인자 산정을 위하여 국내 도송수강관에 대하여 124개의 Hazen Williams및 Darcy-Weisbach 마찰계수를 실측, 분석하였다. 그 결과 국내 도송수강관은 국외의 마찰계수 변화형태와 유사한 경향을 보이며 관경이 클수록 (Diameter>1100mm) 통수능은 관령에 많은 영향을 받으나 관경이 작을수록 관경과 관령에 동시에 영향을 받는다는 사실을 알았다. 또한 Hazen Williams의 C 값은 외국에 비해 약 5-10 정도 작은 것으로 나타났으며, 조도높이의 성장률은 약 0.41 mm/년으로 관의 통수능이 외국에 비해 빨리 저하한다는 사실이 밝혀져 그 원인 파악 및 통수능 산정기준을 재 검토해야 할 것으로 판단되었다. For the most efficient operation of water mains, 124 head losses in domestic water supply steel mains were measured to provide the values of friction coefficient and the variable affecting the deterioration rate of Hazen Williams' and Darcy-Weisbach's friction coefficient. The experimental results show that pipe age is governing the friction coefficient of large mains (Diameter > 1100 mm). On the other hands, pipe age and pipe diameter are affecting the variation of carrying capacity for small mains (Diameter < 1100 mm). The friction coefficient of water mains in foreign countries is higher than that in Korea by about 5 to 10 in Hazen Williams' C value. The growing rate of roughness height of domestic water main is about 0.41 mm/year which is higher than the average of United States of America. So further study is required to find out what causes the serious deterioration rate.

  • PDF

사축식 유압 펌프의 마찰손실 해석 (Analysis on the frictional loss of a bent-axis type hydraulic piston pump)

  • 홍예선;도윤호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.1548-1553
    • /
    • 2003
  • The design of a high speed axial piston pump for hydrostatic transmission systems requires specific understanding on where and how much its internal frictional and flow losses are generated. In this study, the frictional loss of a bentaxis type hydraulic piston pump was analyzed in order to find out which design factors influence the mechanical efficiency most significantly. To this end, the friction coefficients of the sliding components were experimentally identified by a specially constructed tribometer. Applying them to the three-dimensional dynamic model of the pump presented by Doh and Hong [1], the friction torques generated by the sliding components such as piston head , bearing and valve plate were theoretically computed. The accuracy of the computed results was confirmed by the comparison with the experimentally measured mechanical efficiency. In this paper, it is shown that the viscous friction on the valve plate and the drive shaft bearing is the primary sources of the frictional losses of the bent-axis type pump, while the friction forces on the piston contribute to them only slightly.

  • PDF

Fuzzy Logic Speed Controller of 3-Phase Induction Motors for Efficiency Improvement

  • Abdelkarim, Emad;Ahmed, Mahrous;Orabi, Mohamed;Mutschler, Peter
    • Journal of Power Electronics
    • /
    • 제12권2호
    • /
    • pp.305-316
    • /
    • 2012
  • The paper presents an accurate loss model based controller of an induction motor to calculate the optimal air gap flux. The model includes copper losses, iron losses, harmonic losses, friction and windage losses, and stray losses. These losses are represented as a function of the air gap flux. By using the calculated optimal air gap flux compared with rated flux for speed sensorless indirect vector controlled induction motor, an improvement in motor efficiency is achieved. The motor speed performance is improved using a fuzzy logic speed controller instead of a PI controller. The fuzzy logic speed controller was simulated using the fuzzy control interface block of MATLAB/SIMULINK program. The control algorithm is experimentally tested within a PC under RTAI-Linux. The simulation and experimental results show the improvement in motor efficiency and speed performance.

승용차용 터보과급기의 저널 베어링 마찰 손실 측정 (Measurement of Journal Bearing Friction Loss of Turbocharger in a Passenger Vehicle)

  • 정진은;전세훈
    • 한국산학기술학회논문지
    • /
    • 제19권7호
    • /
    • pp.9-15
    • /
    • 2018
  • 본 연구에서는 터보과급기의 성능을 저해하는 주요 인자 중 하나인 마찰손실에 대한 연구를 수행하였다. 실제 엔진에서 빈번하게 사용되는 저속 구간에서의 승용차용 터보과급기의 마찰손실 측정 장치를 개발하고, 저속 영역에서 작동하는 터보과급기의 마찰손실을 측정하였다. 플로팅 타입의 승용차용 터보과급기 저널 베어링를 실험 대상으로 선정하였으며, 마찰손실 측정 장치는 구동 모터, 오일 공급 시스템, 마그네틱 커플링으로 구성하였다. 실제 차량의 저속 운전 상황을 모사할 수 있도록 설계, 제작되었고, 터보과급기 회전속도, 오일 온도 및 압력을 실험 변수로 선정하였다. 또한, 마찰손실 측정 장치는 로드 셀을 사용하여 발생하는 마찰 토크를 직접 측정하여 마찰손실을 산출하였으며, 커플링을 통해 구동 모터의 동력을 터보과급기 축에 전달하고, 오일 온도 및 압력을 조절하였다. 오일 압력 3bar와 4bar로 오일을 공급하는 상태에서 오일 온도를 $50^{\circ}C$에서 $100^{\circ}C$까지 $10^{\circ}C$ 간격으로 변화시키면서 터보과급기를 회전수 30,000~90,000rpm으로 작동시켰다. 터보과급기 회전속도 증가할 때 마찰손실은 증가하였으며, 과급기 회전속도의 1.6 승에 비례함을 보였다. 오일 온도가 증가함에 따라 마찰손실은 감소하였으며, 오일 압력이 증가함에 따라 마찰손실은 증가하였다. 따라서 적절한 오일 온도와 압력을 유지하는 것이 필요하다.

가솔린 엔진에서 연료 분사량 및 오일 온도에 따른 피스톤 마찰손실 특성 연구 (Study on the Characteristics of Piston Friction Losses for Fuel Injected Mass and Oil Temperature in a Gasoline Engine)

  • 강종대;조진우;박성욱
    • 한국분무공학회지
    • /
    • 제27권3호
    • /
    • pp.161-166
    • /
    • 2022
  • To measure the change in friction loss due to the control of fuel mass and oil temperature in a gasoline engine, the floating liner method was used to measure the friction generated by the piston of a single-cylinder engine. First, to check the effect of combustion pressure on friction, the friction loss was measured by adjusting the fuel mass. It was confirmed that the friction loss increased as the fuel mass increased under the same lubrication conditions. In addition, it was confirmed that the mechanical efficiency decreased as the fuel mass increased. Next, to check the effect of lubrication conditions on friction, the friction loss was measured by controlling the oil temperature. It was confirmed that friction loss increased as the oil temperature decreased at the same fuel mass. As the oil temperature decreases, the viscosity increases, resulting in decreased mechanical efficiency and increased friction loss.

왕복동형 압축기 피스톤-실린더계의 동적 거동 및 윤활특성 해석 (Analysis of the Dynamic Behavior and Lubrication Characteristics of the Piston-Cylinder System in Reciprocating Compressors)

  • 김태종
    • Tribology and Lubricants
    • /
    • 제18권4호
    • /
    • pp.291-298
    • /
    • 2002
  • In this study, a numerical analysis f3r the piston secondary dynamics and lubrication characteristics of small refrigeration reciprocating compressors is presented. In general, the length of cylinder in this class of compressors is shortened to diminish the frictional losses of the piston-cylinder system. So, the contacting length between piston and cylinder wall is in variable with the rotating crank angle around the BDC of the reciprocating piston. In the problem formulation of the piston dynamics, the change in bearing length of the piston and all corresponding forces and moments are considered in order to determine the piston trajectory, velocity and acceleration at each step. A Newton-Raphson procedure was employed in solving the secondary dynamic equations of the piston. The developed computer program can be used to calculate the entire piston trajectory and the hydrodynamic forces and moments as functions of crank angle under compressor running conditions. The results explored the effects of the radial clearance, lubricant viscosity, and pin location on the stability of the piston, the oil leakage, and friction losses.

미끄러지는 벨트 장치를 이용한 난류 항력 감소 (Turbulent Drag Reduction Using the Sliding-Belt Device)

  • 최병귀;최해천
    • 대한기계학회논문집B
    • /
    • 제23권11호
    • /
    • pp.1481-1489
    • /
    • 1999
  • The sliding-belt concept introduced by Bechert et al. (AIAA J., Vol. 34, pp. 1072~1074) is numerically applied to a turbulent boundary layer flow for the skin-friction reduction. The sliding belt is moved by the shear force exerted on the exposed surface of the belt without other dynamic energy input. The boundary condition at the sliding belt is developed from the force balance. Direct numerical simulations are performed for a few cases of belt configuration. In the ideal case where the mechanical losses associated with the belt can be ignored, the belt velocity increases until the integration of the shear stress over the belt surface becomes zero, resulting in zero skin friction on the belt. From practical consideration of losses occurred In the belt device, a few different belt velocities are given to the sliding belt. It is found that the amount of drag reduction is proportional to the belt velocity.