• Title/Summary/Keyword: Friction loss

Search Result 547, Processing Time 0.033 seconds

Discharge Characteristics of Rotating Orifices with Length-to-Diameter Ratios and Inlet Corner Radii (길이 대 직경 비와 입구 모서리 반경에 따른 회전 오리피스의 송출 특성)

  • Ha, Kyoung-Pyo;Kang, Se-Won;Kauh, Sang-Ken
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.7
    • /
    • pp.957-966
    • /
    • 2000
  • The effect of rotation on the discharge coefficient of orifices with various length-to-diameter ratios and two different inlet corner radii was studied. Length-to-diameter ratios of the orifices range from 0.2 to 10, while the inlet shapes are square edged, or round edges of radius-to-diameter ratio of 0.5. From the experiment, we found that rotational discharge coefficient and Rotation number, when based on ideal exit velocity of the orifice considering momentum transfer from the rotor, describe the effect of rotation very well. In this study, the discharge coefficients of rotating orifices are shown to behave similar to those of the well-known non-rotating orifices. For both rotating and non-rotating orifices, the discharge coefficients increase with the length-to-diameter ratio until a maximum is reached. The flow reattachments in the relatively short orifices are responsible for the increase. The coefficient then decreases with the length-to-diameter ratio due to the friction loss along the orifice bore. The length-to-diameter ratio that yields maximum discharge coefficient, however, increases with the Rotation number because the increased flow-approaching angle requires larger length-to-diameter ratio for complete reattachment. The length-to-diameter ratio for complete reattachment is shorter for round edged orifices than that of square edged orifices by about a unit length-to-diameter ratio.

Development of a Surface Shape for the Heat Transfer Enhancement and Reduction of Pressure Loss in an Internal Cooling Passage (내부 냉각유로에서 열전달 강화와 압력손실 감소를 위한 표면 형상체의 개발)

  • Doo, Jeong-Hoon;Yoon, Hyun-Sik;Ha, Man-Yeong
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2465-2470
    • /
    • 2008
  • A new surface shape of an internal cooling passage which largely reduces the pressure drop and enhances the surface heat transfer is proposed in the present study. The surface shape of the cooling passage is consisted of the concave dimple and the riblet inside the dimple which is protruded along the stream-wise direction. Direct Numerical Simulation (DNS) for the fully developed turbulent flow and thermal fields in the cooling passage is conducted. The Numerical simulations for the 5 different surface shapes are conducted at the Reynolds number of 2800 based on the mean bulk velocity and channel height and Prandtl number of 0.71. The driving pressure gradient is adjusted to keep a constant mass flow rate in the x direction. The thermo-aerodynamic performance for the 5 different cases used in the present study was assessed in terms of the drag, Nusselt number, Fanning friction factor, Volume and Area goodness factor in the cooling passage. The value of maximum ratio of drag reduction is -22.86 [%], and the value of maximum ratio of Nusselt number augmentation is 7.05 [%] when the riblet angle is $60^{\circ}$ (Case5). The remarkable point is that the ratio of Nusselt number augmentation has the positive value for the surface shapes which have over $45^{\circ}$ of the riblet angle. The maximum Volume and Area goodness factor are obtained when the riblet angle is $60^{\circ}$ (Case5).

  • PDF

Corrosion and Wear Properties of Cold Rolled 0.087% Gd Lean Duplex Stainless Steels for Neutron Absorbing Material

  • Choi, Yong;Baik, Youl;Moon, Byung-Moon;Sohn, Dong-Seong
    • Nuclear Engineering and Technology
    • /
    • v.48 no.1
    • /
    • pp.164-168
    • /
    • 2016
  • Lean duplex stainless steels with 0.087 wt.% gadolinium (Gd) were inert arc-melted and cast in molds of size $10mm{\times}10mm{\times}20mm$. The micro-hardnesses of the rolling direction (RD), transverse direction (TD) and short transverse (ST) direction were $258.5H_V$, $292.3H_V$, and $314.7H_V$, respectively. A 33% cold rolled specimen had the crystallographic texture that (100) pole was mainly concentrated to the normal direction (ND) and (110) pole was concentrated in the center of ND and RD. The corrosion potential and corrosion rate in artificial seawater and $0.1M\;H_2SO_4$ solution were in the range of $105.6-221.6mV_{SHE}$, $0.59-1.06mA/cm^2$, and $4.75-8.25mV_{SHE}$, $0.69-1.68mA/cm^2$, respectively. The friction coefficient and wear loss of the 0.087 w/o Gd-lean duplex stainless steels in artificial seawater were about 67% and 65% lower than in air, whereas the wear efficiency was 22% higher. The corrosion and wear behaviors of the 0.087 w/o Gd-lean duplex stainless steels significantly depended on the Gd phases.

Evaluation of Machining Characteristics and Performance Analysis of Air-Lubricated Dynamic Bearing (공기동압베어링의 성능 해석 및 가공특성 평가)

  • Baek, Seung-Yub;Kim, Kwang-Lae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.12
    • /
    • pp.5412-5419
    • /
    • 2011
  • The need is growing for high-speed spindle because various equipment are becoming more precise, miniaturization and high speed with the development of industries. Air-lubricated dynamic bearings are widely used in the optical lithographic manufacturing of wafers to realize nearly zero friction for the motion of the stage. Air-lubricated dynamic bearing can be used in high-speed, high-precision spindle system and hard disk drive(HDD) because of its advantages such as low frictional loss, low heat generation, averaging effect leading better running accuracy. In the paper, numerical analysis is undertaken to calculate the performance of air-lubricated dynamic bearing with herringbone groove. The static performances of herringbone groove bearings which can be used to support the thrust load are calculated. Electrochemical micro machining($EC{\mu}M$) which is non-contact ultra precision machining method has been developed to fabricate the air-lubricated dynamic bearing and optimum parameters which are inter electrode gap size, concentration of electrolyte, machining time are simulated using numerical analysis program.

Development of Optimal Design Program of Air-Coal Pneumatic Conveying System to Enhance Combustion Efficiency (연소효율 향상을 위한 공기-미분탄 수송배관장치의 최적화 설계 프로그램 개발)

  • Ku, Jae-Hyun
    • Journal of the Korean Institute of Gas
    • /
    • v.13 no.5
    • /
    • pp.7-14
    • /
    • 2009
  • This study describes to analyze the pressure drop characteristics for the air-particle flow in pneumatic coal powder conveying system and to proper design of the orifice located in the system to enhance combustion efficiency in furnace of the coal-fired power plant. Usually the system consists of the straight type pipe, the curved type pipe and the elbow, which cause increase of the pressure drop. In this study, the pressure drop arised in the system with straight and curved type pipes is analyzed with interactions of motion of air flow and particles. It is realized that total pressure drop increases with increasing of the pipe length and the angle of curved type pipe due to friction loss of air and particles in the system. The program for analysis of the pressure drop and optimum design of the orifice size for air flow control in the system is developed. The result is also compared with the existing system.

  • PDF

CFD Analysis of Trap Effect of Groove in Lubricating Systems: Part I - Variation in Cross-Sectional Shape of Groove (그루브의 Trap 효과에 대한 CFD 해석: 제 1부 − 그루브 단면 형상의 변화)

  • Hong, Sung-Ho
    • Tribology and Lubricants
    • /
    • v.32 no.3
    • /
    • pp.101-105
    • /
    • 2016
  • Trap effect of groove is evaluated in a lubricating system using computational fluid dynamics (CFD) analysis. The simulation is based on the standard k-ε turbulence model and the discrete phase model (DPM) using a commercial CFD code FLUENT. The simulation results are also capable of showing the particle trajectories in flow field. Computational domain is meshed using the GAMBIT pre-processor. The various grooves are applied in order to improve lubrication characteristics such as reduction of friction loss, increase in load carrying capacity, and trapping of the wear particles. Trap effect of groove is investigated with variations in cross-sectional shape and Reynolds number in this research. Various cross-sectional shapes of groove (rectangular, triangle, U shaped, trapezoid, elliptical shapes) are considered to evaluate the trap effect in simplified two-dimensional sliding bearing. The particles are assumed to steel, and defined a single particle injection condition in various positions. The “reflect” boundary condition for discrete phase is applied to the wall boundary, and the “escape” boundary condition to “pressure inlet” and “pressure outlet” conditions. The streamlines are compared with particles trajectories in the groove. From the results of numerical analysis in the study, it is found that the cross-sectional shapes favorable to the creation of vortex and small eddy current are effective in terms of particle trapping effect. Moreover, it is found that the Reynolds number has a strong influence on the pattern of vortex or small eddy current in the groove, and that the pattern of the vortex or small eddy current affects the trap effect of the groove.

Surface Hardening and Wear Properties of AISI 410 Martensitic Stainless Steel by High & Low Temperature Gaseous Nitriding (고온 가스 질화와 저온 가스 질화 방법에 따른 AISI 410 마르텐사이트 스테인레스강의 경화층 및 마모 특성)

  • Son, Seok-Won;Lee, Won-Beom
    • Journal of the Korean institute of surface engineering
    • /
    • v.51 no.4
    • /
    • pp.249-255
    • /
    • 2018
  • High temperature and low temperature gaseous nitriding was performed in order to study of the surface hardening and wear properties of the nitrided AISI 410 Martensitic stainless steels. High temperature gaseous nitiridng (HTGN) was carried out using partial pressure $N_2$ gas at $1,100^{\circ}C$ for 10 hour, and Low temperature gaseous nitiridng (LTGN) was conducted in a gas mixture of NH3 and N2 at $470^{\circ}C$ for 10 hour. The nitrided samples were characterized by microhardness measurements, optical microscopy and scanning electron microscopy. The phases were identified by X-ray diffraction and nitrogen concentration was analyzed by GD-OES. The HTGN specimen had a surface hardness of about $700HV_{0.1}$, $350{\mu}m$ of case depth. A ${\sim}50{\mu}m$ thick, $1,250HV_{0.1}$ hard nitrided case formed at the surface of the AISI 410 steel by LTGN, composed nitrogen supersaturated expanded martensite and ${\varepsilon}-Fe_{24}N_{10}$ iron nitrides. Additionally, the results of the wear tests, carried out LTGN specimen was low friction coefficient and high worn mass loss of ball. The increase in wear resistance can be mainly attributed to the increase in hardness and to the lattice distortion caused by higher nitrogen concentration.

Parametric study of porous media as substitutes for flow-diverter stent

  • Ohta, Makoto;Anzai, Hitomi;Miura, Yukihisa;Nakayama, Toshio
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • v.2 no.2
    • /
    • pp.111-125
    • /
    • 2015
  • For engineers, generating a mesh in porous media (PMs) sometimes represents a smaller computational load than generating realistic stent geometries with computer fluid dynamics (CFD). For this reason, PMs have recently become attractive to mimic flow-diverter stents (FDs), which are used to treat intracranial aneurysms. PMs function by introducing a hydraulic resistance using Darcy's law; therefore, the pressure drop may be computed by test sections parallel and perpendicular to the main flow direction. However, in previous studies, the pressure drop parallel to the flow may have depended on the width of the gap between the stent and the wall of the test section. Furthermore, the influence of parameters such as the test section geometry and the distance over which the pressure drops was not clear. Given these problems, computing the pressure drop parallel to the flow becomes extremely difficult. The aim of the present study is to resolve this lack of information for stent modeling using PM and to compute the pressure drop using several methods to estimate the influence of the relevant parameters. To determine the pressure drop as a function of distance, an FD was placed parallel and perpendicular to the flow in test sections with rectangular geometries. The inclined angle method was employed to extrapolate the flow patterns in the parallel direction. A similar approach was applied with a cylindrical geometry to estimate loss due to pipe friction. Additionally, the pressure drops were computed by using CFD. To determine if the balance of pressure drops (parallel vs perpendicular) affects flow patterns, we calculated the flow patterns for an ideal aneurysm using PMs with various ratios of parallel pressure drop to perpendicular pressure drop. The results show that pressure drop in the parallel direction depends on test section. The PM thickness and the ratio of parallel permeability to perpendicular permeability affect the flow pattern in an ideal aneurysm. Based on the permeability ratio and the flow patterns, the pressure drop in the parallel direction can be determined.

The Jet-fan Model Test for a Road Tunnel Ventilation (도로터널 제트팬 모형 실험)

  • Ryu, Jae-Hong;Yoo, Young-Ho;Kim, Jin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.8
    • /
    • pp.630-640
    • /
    • 2003
  • As tunnel ventilation has recently been playing a major role in the tunnel construction and maintenance, longitudinal ventilation systems with jet fans have been utilized a great deal because they are economical and effective. However, due to the length of tunnels and heavy traffic, it is hard to take the field measurements. In this study, therefore, the computer simulation and the model experiment of producing a wind tunnel were carried out simultaneously and the results were compared. The ultimate objective of this research was to interpret the air flow pattern inside the tunnel with a jet-fan was set up, and to offer the useful data for jet-fan installation and operation. The experiment was carried out with varying the jet-fan diameters, location of installation, the discharge velocity. Result showed that as the initial static pressure came up with the negative pressure, the tunnel air flowed into the inside of tunnel from outside due to the entrainment-effect and the backflow-phenomenon by separation-effect was observed in the lower half part of the tunnel. As the jet-fan was getting closer to the tunnel wall, the entrainment-effect caused by the interaction with the wall was increased; however, the mixing distance and irregular flow section became longer, and also the air pressure loss generated by wall friction was large.

Effect of the Pocket Depth on the Hammering Behavior of an Air Bearing Stage (포켓의 깊이가 공기 베어링 스테이지의 햄머링 현상에 미치는 영향)

  • Lee, Chun Moo;Kim, Gyu Ha;Park, Sang Joon;Hwang, Gyu-Jin;Park, Sang-Shin
    • Tribology and Lubricants
    • /
    • v.37 no.4
    • /
    • pp.129-135
    • /
    • 2021
  • An air-bearing stage uses externally pressurized air as the lubricant between the stage and the rail. The supporting force generated by the supplied air makes the stage rise and move smoothly with extremely low friction. Mechanical contacts rarely happen, the bearing surfaces do not produce wear particles, and dust is not generated. It also has the advantage of having low energy loss and high precision. Because of its advantages, an air-bearing stage is used in several types of machines that require high precision. In this article, the effect of the pocket depth on the hammering phenomena of the air bearing is studied. An analysis program is developed to calculate the dynamic behavior of the stage by solving the Reynolds equation between the stage and the guideway and the equations of motion on the stage. The acceleration, constant movement, and deceleration are applied to the stage. The stage is modeled as a five-degree-of-freedom system. In the course of the dynamic behavior, the hammering phenomena occur under some special conditions. The deeper the pocket, the more unstable the behavior of the stage, and air hammering occurs when it exceeds a certain depth. In addition, the higher the supply pressure, the more unstable the behavior of the stage. However, hammering occurs even with a shallow pocket depth. Other conditions that affect the hammering phenomena are calculated and discussed.