• 제목/요약/키워드: Friction drag

검색결과 181건 처리시간 0.021초

An Experimental Study on Friction Reduction by Additives in a Water Channel

  • Kim Wu-Joan;Kim Hyoung-Tae
    • Journal of Ship and Ocean Technology
    • /
    • 제9권1호
    • /
    • pp.27-37
    • /
    • 2005
  • An experimental study has been carried out as a basic research for the development of the friction drag reduction technology for water-borne vehicles by injecting microbubbles or polymer solution. Experimental apparatus and procedures have been devised and prepared to measure the changes of the wall friction with the injection of additives and the basic experimental data on friction drag reduction are obtained for fully developed channel flows. The effects of key controlling parameters were investigated for higher drag reduction with varying the concentration and the injection rate of additives. The frictional drag has been reduced up to $25\%$ with the microbubble injection and $50\%$ with the polymer solution injection.

고무류의 마찰특성에 관한 실험적 연구 (An Experimental Study on the Frictional characteristics of Rubbers)

  • 천길정;이동환;오성모;이봉구;김완두
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 1998년도 제28회 추계학술대회
    • /
    • pp.144-148
    • /
    • 1998
  • Using a test apparatus developed Lrt the laboratory, frictional characteristics of natural rubbers have been analyzed by experimental study. Friction coefficient has been calculated from the measured normal force and friction force under various speeds, loads, and temperatures. The relations between the various operating conditions and friction coefficients have been verified. Especially, drag friction due to the visco-elastic behavior of the rubber has been observed in this analysis.

  • PDF

습식 클러치 드래그 토크 특성의 실험적 평가 (Experimental Assessment of Drag Torque of Wet Clutch)

  • 김한솔;정구현
    • Tribology and Lubricants
    • /
    • 제33권6호
    • /
    • pp.269-274
    • /
    • 2017
  • Currently, fuel efficiency becomes one of critical issues for automotive industries as concerns about environmental and energy problems grow. In an automatic transmission of an automobile, a drag torque due to a viscous drag of a fluid between friction and clutch plates is one of factors that degrade fuel economy. In this work, the drag torque characteristics of a wet clutch was experimentally investigated with respect to rotational speed, temperature of automatic transmission fluid (ATF), and gap between friction and clutch plates. The experimental results showed that drag torque increases to a certain level, and then decrease to the steady state value with increasing rotational speed. This behavior may be associated with two-phase flow of air and ATF at gap between friction and clutch plates. Also, it was found that the maximum drag torque value decreased as ATF viscosity decreases with increasing temperature. However, it was shown that the point at which the maximum drag torque occurs was not significantly affected by the ATF temperature. In addition, maximum drag torque was found to decrease as the gap between friction and clutch plates increased from 0.1 mm to 0.2 mm. Furthermore, it was observed that the generation of maximum drag torque was delayed as the gap increased. The outcomes of this work are expected to be helpful to gain a better understanding of drag torque characteristic of a wet clutch, and may therefore be useful in the design of wet clutch systems with improved performance.

습식 DCT의 드래그 토크 저감을 위한 클러치 패드 유로 설계 (A Study on the Wet Clutch Pattern Design for the Drag Torque Reduction in Wet DCT System)

  • 조정희;한준열;김우정;장시열
    • Tribology and Lubricants
    • /
    • 제33권2호
    • /
    • pp.71-78
    • /
    • 2017
  • The drag torque in the wet clutch system of a dual clutch transmission system is investigated because it is relatively high, up to 10 of the total output torque of the engine, even when the clutch is in the disengagement state with zero torque transfer. Drag torque results from the shear resistance of the DCTF between the friction pad and separator plate. To reduce the drag torque for ensuring fuel economy, the groove pattern of the wet clutch friction pad is designed to have a high flow rate through the pattern groove. In this study, four types of groove patterns on the friction pad are designed. The volume fraction of the DCTF (VOF) and hydrodynamic pressure developments in the gap between the friction pad and separator plate are computed to correlate with the computation of the drag torque. From the computational results, it is found that a high VOF and hydrodynamics increase the drag torque resulting from the shear resistance of the DCTF. Therefore, a patterned groove design should be used for increasing the flow rate to have more air parts in the gap to reduce the drag torque. In this study, ANSYS FLUENT is used to solve the flow analysis.

THEORETICAL STUDIES ON FRICTION DRAG REDUCTION CONTROL WITH THE AID OF DIRECT NUMERICAL SIMULATION - A REVIEW

  • Fukagata, Koji
    • 한국전산유체공학회지
    • /
    • 제13권4호
    • /
    • pp.96-106
    • /
    • 2008
  • We review a series of studies on turbulent skin friction drag reduction in wall-turbulence recently conducted in Japan. First, an identity equation relating the skin friction drag and the Reynolds shearstress (the FIK identity) is introduced. Based on the implication of the FIK identity, a new analytical suboptimal feedback control law requiring the streamwise wall-shear stress only is introduced and direct numerical simulation (DNS) results of turbulent pipe flow with that control is reported. We also introduce DNS of an anisotropic compliant surface and parameter optimization using an evolutionary optimization technique.

비뉴우튼유체의 관이음음 유동저항에 관한 연구 (A study on the flow resistance in the various fittings for non-newtonian fluid)

  • 유상신;김춘식
    • 대한기계학회논문집
    • /
    • 제3권4호
    • /
    • pp.151-157
    • /
    • 1979
  • An experomental study on drg reduction in the rough tubes is presunted using the drrective drag reducing proymer solutions. The friction factors of the rough tubes follow the maximum drag reduction asymptote for the lower Reynolds numbers in the turbulent flow. However, as the Reynols number is increased the rougher tube results deviate from the maximum drag rduction asymptote sooner than the less rough tube results. There appears a systematic deviation from the maximum drag reduction asymptote depending on the relative roughness just as friction factors for the Newtonian hluid inthe rough tubes exhibit in the turbulent region. The minor loss results inthe various fittings such as elbows, tees, and gate valves are presunted The fittings show higher values of the loss coefficient in the drag reducing polymer solutions than in the Newtonian fluid, which is quite contrary to the drag reduction phenomenon in the straight tubes. The eqivalent length of the fittings for the drag reducing polymer solutions is many times longer than that for Newtonian fluids due to the increase of the loss coefficient and the decrease of the friction factor. It is speculated that the solid-like behavior of the polymer solutions in the abruptly changing folw passage plays a significant role in increasing the loss coefficient.

Efficiency Increase and Input Power Decrease of Converted Prototype Pump Performance

  • Oshima, Masao
    • International Journal of Fluid Machinery and Systems
    • /
    • 제9권3호
    • /
    • pp.205-212
    • /
    • 2016
  • The performance of a prototype pump converted from that of its model pump shows an increase in efficiency brought about by a decrease in friction loss. As the friction force working on impeller blades causes partial peripheral motion on the outlet flow from the impeller, the increase in the prototype's efficiency causes also a decrease in its input power. This paper discusses results of analyses on the behavior of the theoretical head or input power of a prototype pump. The equation of friction-drag coefficient for a flat plate was applied for the analysis of hydraulic loss in impeller blade passages. It was revealed that the friction-drag of a flat plate could be, to a certain degree, substituted for the friction drag of impeller blades, i.e. as a means for analyzing the relationship between a prototype pump's efficiency increase and input power decrease.

토크와 드래그를 고려한 시추궤도 모델링 연구 (Well Trajectory Modelling Considering Torque and Drag)

  • 김지훈;최준형;김도영;박태일;이대성
    • 한국지반환경공학회 논문집
    • /
    • 제24권1호
    • /
    • pp.51-60
    • /
    • 2023
  • 수직 시추와 다르게 방향성 시추작업에서 발생하는 드릴스트링(drill string) 변형, 케이싱(casing) 마모, 키 씨팅(key seating) 등의 문제를 방지하기 위해서는 시추 궤도 내에서 발생하는 토크(torque)와 드래그(drag)가 최소화되어야 한다. 토크와 드래그의 크기는 시추 궤도 형태, 이수(mud), 드릴스트링의 종류 그리고 킥오프 지점(KOP, kick-off point)과 같은 매개변수들에 의해 결정되기 때문에 시추 궤도 설계 과정에서 고려하여 설계하여야 한다. 본 연구에서는 가장 일반적인 방향성 시추 궤도인 빌드-홀드(Build-hold) 형태의 시추 궤도에 킥오프 지점이 각기 다른 시추 궤도를 선정하였고, 분포하중 모델(analytical friction model)을 이용하여 각 구간내에서의 분포하중을 계산하여 궤도 전체에 대한 토크와 드래그를 계산하였다. 또한 매개변수에 따른 분석 값을 비교하여 분포하중이 최소로 발생하는 최적의 시추 궤도를 선정하였다. 분석결과 분포 하중을 최소화하기 위해서는 윤활성이 높은 이수를 사용, 궤도 형태에 따른 알맞은 킥오프 지점과 가능한 최소의 도그-래그를 지정하여 설계하는 것이 효과적임을 알 수 있었다. 이러한 결과는 분포하중을 최소화하기 위한 모든 방향성 시추 궤도 설계에 사용된다.

마찰저항감소를 위한 난류유동의 DNS/LES 해석기술의 개발 (Development of Numerical Tool for the DNS/LES of Turbulent Flow for Frictional Drag Reduction)

  • 윤현식;구본국;;박종천;전호환
    • 대한조선학회논문집
    • /
    • 제41권1호
    • /
    • pp.47-54
    • /
    • 2004
  • The friction drag reduction of a ship is of prime importance for the design and production of high-valued/high-tech ship. Thus, this study carried out the development of reliable numerical tools to identify the friction drag reduction mechanism for turbulent boundary layer on the ship surface and to deduce the optimum reduction technique by numerical experiment. The developed LES and DNS numerical tools were applied to simulate the turbulent channel flow These results were very well matched with previous results not only qualitatively but also quantitatively. The parallelization using MPI (Message Passing Interface) technique implemented in the developed code to speed up the simulation and to obtain the accurate results from the fine grid system was testified its computational efficiency.

새로운 수동제어소자인 공동을 이용한 마찰력과 열전달 감소에 관한 연구 (Cavity as a New Passive Device for Reduction of Skin Friction and Heat Transfer)

  • 한성현;최해천
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.463-466
    • /
    • 2002
  • In order to examine the possibility of using a cavity as a passive device for reduction of skin friction and heat transfer, an intensive parametric study over a broad range of the cavity depth and length at different Reynolds numbers is performed for both laminar and turbulent boundary layers in the present study. Direct and large eddy simulation techniques are used for turbulent boundary layers at low and moderate Reynolds numbers, respectively. for both laminar and turbulent boundary layers over a cavity, a flow oscillation occurs due to the shear layer instability when the cavity depth and length are sufficiently large and it plays an important role in the determination of drag and heat-transfer increase or decrease. For a cavity sufficiently small to suppress the flow oscillation, both the total drag and heat transfer are reduced. Therefore, the applicability of a cavity as a passive device for reduction of drag and heat transfer is fully confirmed in the present study. Scaling based on the wall shear rate of the incoming boundary layer is also proposed and it is found to be valid in steady flow over a cavity.

  • PDF