• Title/Summary/Keyword: Friction drag

Search Result 181, Processing Time 0.024 seconds

On the hydrodynamic resistance and stabilization of the coonstripe shrimp pot to reduce catch of a small size shrimp (자원관리형 반구형 새우통발의 형상 변화에 따른 유체저항 특성과 수중안정성)

  • Kim, Seong-Hun;Lee, Kyoung-Hoon;Kim, Hyung-Seok
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.48 no.1
    • /
    • pp.1-9
    • /
    • 2012
  • For the optimal design of a shrimp pot to control the catch size and to reduce catch the small size shrimp, tank experiments were carried out to study the pot stability under water. Tank experiments were carried out to measure the drag with 4 kinds of model pots that have 50% selection on the individual of 25mm carapace length. The drag of each pot was measured every 10 times with changing the current speeds from 0.1m/s to 0.7m/s in 0.1m/s intervals and the pot attack angle from $0^{\circ}$ to $90^{\circ}$ in $15^{\circ}$ interval in a flume tank. The relation between the current speed and drag was presented. The stability of pot was estimated using the drag data and the friction data of Kim et al. (2008b). The results showed that, the drag was shown lower as small as the projected area of pot depending on the current speeds and angles. The model pots were showed to slide on the seabed in case of rock at the current speeds 0.35-0.38m/s and the possibility of turn over at the current speeds 0.77-0.89m/s. In conclusion, the stability of a shrimp pot showed more stable as the pot of the lower the height and the smaller projected area on current.

Wave Drag Reduction due to Repetitive Laser Pulses (반복 레이저 펄스를 이용한 초음속 비행체의 항력저감)

  • Kim, Jae-Hyung;Sasoh, Akihiro;Kim, Heuy-Dong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.381-384
    • /
    • 2011
  • Wave drag reduction due to the repetitive laser induced energy deposition over a flat-nosed cylinder is experimentally conducted in this study. Irradiated laser pulses are focused by a convex lens installed in side of the in-draft wind tunnel of Mach 1.94. The maximum frequency of the energy deposition is limited up to 80. Time-averaged drag force is measured using a low friction piston which was backed by a load cell in a cavity as a controlled pressure. Stagnation pressure history, which is measured at the nose of the model, is synchronized with corresponding sequential schlieren images. With cylinder model, amount of drag reduction is linearly increased with input laser power. The power gain only depends upon the pulse energy. A drag reduction about 21% which corresponds to power gain of energy deposition of approximately 10 was obtained.

  • PDF

Numerical Study on Roughness Effect for Axi-symmetry Submerged Body in High Reynolds Number (고 레이놀즈 수에서의 축대칭 몰수체의 거칠기에 대한 수치연구)

  • Joung, Tae-Hwan;Song, Hyung-Do;Yum, Jong-Gil;Song, Seongjin;Park, Sunho
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.2
    • /
    • pp.246-252
    • /
    • 2018
  • In this paper, the friction drag force of 3D submerged body is investigated by considering the surface roughness, the first grid height, and the Reynolds number using open CFD source code, OpenFOAM 4.0. A procedure for estimating drag components by CFD code is set up and suggested in this study. In the 3D submerged body, because of the form factor in the 3D computations, the friction resistance with the small roughness of $12{\mu}m$ obtains different result with the smooth wall. As the Reynolds number increased, the boundary layer becomes thinner and the fiction resistance tends to decrease. In the computations for the effect of y+, the friction resistance and wall shear stress are excessively predicted when the y+ value deviates from the log layer. This is presumably because the boundary layer becomes thicker and the turbulence energy is excessively predicted in the nose due to the increase in y+ value. As the roughness increases, the boundary layer becomes thicker and the turbulence kinetic energy on the surface increases. From this study, the drag estimation method, considering the roughness by numerical analysis for ships or offshore structures, can be provided by using the suggested the y+ value and surface roughness with wall function.

Satellite Attitude Control on Reaction Wheel Low-Speed Region (반작용휠 저속구간에서의 위성자세제어)

  • Son, Jun-Won;Park, Young-Woong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.11
    • /
    • pp.967-974
    • /
    • 2017
  • Reaction wheel shows nonlinear torque response on low-speed region due to friction. Thus precise satellite attitude control on this region is hard to achieve. Previous research tries to solve this problem, by compensating friction or applying dither command. However, due to difficulties of drag torque modeling or frequent zero wheel speed crossing, these methods are not suitable to apply on the real satellite attitude control. To solve this problem, we propose the attitude controller gain adjustment method based on the attitude error.

Relationships Between Pre-Skidding and Pre-Braking Speed (활주 직전과 제동 직전 속도의 상관관계 규명에 관한 연구)

  • Ryu, Tae-Seon;Jeon, Jin-U;Park, Hong-Han;Lee, Su-Beom
    • Journal of Korean Society of Transportation
    • /
    • v.27 no.1
    • /
    • pp.43-51
    • /
    • 2009
  • This paper investigates the accuracy of vehicle pre-braking speed estimates based upon tire/roadway coefficient of friction (drag factor) measurements and skid mark measurements Data for pre-braking and pre-skidding speeds were collected to determine if there were any correlations between pre-braking speeds and pre-skidding speeds. Braking tests were performed on two vehicles using various measurement devices including a fifth wheel, a speed gun, and a vericom 2000. The vehicle speeds, braking distances, skid mark distances, and deceleration histories were recorded. From these data. coefficients of friction and vehicle pre-skidding speeds for the tested road surface were calculated. The pre-skidding speeds were then compared to the actual pre-braking speeds of the vehicles in order to establish relationships between pre-skidding and pre-braking speed. A correlation between the Pre-skidding speed and the actual pre-braking speed was established for the study data.

Design of Pile Foundations Considering Negative Skin Friction (부마찰력을 고려한 말뚝기초 설계)

  • Kim Ju-Hyong;Kwon Oh-Sung;Kim Myoug-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.5
    • /
    • pp.65-74
    • /
    • 2005
  • The negative skin friction on piles, which are installed in currently consolidating soft deposits, creates significant problems on the stability of pile foundations. This study investigated whether or not the pile foundation designs were appropriate in soft deposits with large amount of consolidation settlement. The final settlements of the grounds along the pile depth were estimated by the soil parameters obtained from the laboratory tests and by the field-measured settlement curves, if they were available. The displacement of the piles along the pile depth was estimated by both the load transfer method and the numerical method. Both methods gave similar locations of neutral planes and magnitudes of the maximum axial forces on the piles. The movements of the ground and the piles were compared to calculate the down drag acting on piles. For the piles whose bearing capacities were less than the design loads including the down drag, slip layer coatings and/or incrementing of the pile penetration depth into the bearing stratum were proposed to improve the pile capacities.

A numerical study of scale effects on performance of a tractor type podded propeller

  • Choi, Jung-Kyu;Park, Hyoung-Gil;Kim, Hyoung-Tae
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.2
    • /
    • pp.380-391
    • /
    • 2014
  • In this study, the scale effect on the performance of the podded propeller of tractor type is investigated. Turbulent flow computations are carried out for Reynolds numbers increasing progressively from model scale to full scale using the CFD analysis. The result of the flow calculation for model scale Reynolds numbers agrees well with that of the experiment of a large cavitation tunnel. The existing numerical analysis indicates that the performance of the podded propeller blades is mainly influenced by the advance coefficient and relatively little by the Reynolds number. However, the drag of pod housing with propeller in operation is different from that of pod housing without propeller due to the acceleration and swirl of propeller slipstream which is altered by propeller loading as well as the pressure recovery and friction according to Reynolds number, which suggests that the pod housing drag under the condition of propeller in operation is the key factor of the scale effect on the performance between model and full scale podded propellers. The so called 'drag ratio', which is the ratio of pod housing drag to total thrust of podded propeller, increases as the advance coefficient increases due to accelerated flow in the slipstream of the podded propeller. However, the increasing rate of the drag ratio reduces continuously as the Reynolds number increases from model to full scale progressively. The contribution of hydrodynamic forces, which acts on the parts composed of the pod housing with propeller operating in various loading conditions, to the thrust and the torque of the total propeller unit are presented for a range of Reynolds numbers from model to full scales.

The Characteristics of Two Phase Flow by Non-Newtonian Fluid for Vertical Up-ward in a Tube (수직 상향유동 배관에서 비뉴톤유체에 의한 2상류의 유동특성)

  • Cha K.O.;Kim J. G.;Che K.S.
    • Journal of the Korean Institute of Gas
    • /
    • v.2 no.4
    • /
    • pp.53-59
    • /
    • 1998
  • Flow pattern of air-water two phase flow depends on the conditions of pressure drop, void fraction, and channel geometry. Drag reduction in the two phase flow can be applied to the transport of crude oil, phase change systems such as chemical reactor, pool and boiling flow, and to present cavitation which occurs in pump impellers. But the research on drag reduction in two phase flow is not intensively investigated. Therefore, experimental investigations have been carried out to analyze the drag reduction produced and void fraction by Co-polymer(A611p) addition in the two phase flow system. We find that the maximum point position of local void friction moves from the wall of the pipe to the center of the pipe when polymer concentration increases. Also we find that the polymer solution changes the characteristics of the two phase flow. And then we predict that it is closely related with the drag reduction.

  • PDF

Study on Flow Structure of Turbulent Boundary Layer Over Semi-Circular Riblets (반원형 리블렛 상부 난류경계층의 유동 구조 연구)

  • Lee, Sang Hyun;Lee, Sang Joon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.7
    • /
    • pp.937-944
    • /
    • 1999
  • The near-wall flow structures of turbulent boundary layer over riblets having semi-circular grooves were investigated experimentally for the drag decreasing ($s^+=25.2$) and drag increasing ($s^+=40.6$) cases. The field of view used for tho velocity field measurement was $6.75{\times}6.75mm^2$ in physical dimension, containing two grooves. One thousand instantaneous velocity fields over the riblets were extracted for each case of drag increase and decrease. For comparison, five hundreds instantaneous velocity fields over a smooth flat plate were also obtained under the same flow conditions. To see the global flow structure qualitatively, the flow visualization was also performed using the synchronized smoke-wire technique. For the drag decreasing case ($s^+=25.2$), most of the streamwise vortices stay above the riblets, interacting with the riblet tips. The high-speed in-rush flow toward the riblet surface rarely influences the flow inside tho riblet valleys submerged in the viscous sublayer. The riblet tips seem to impede the spanwise movement of the longitudinal vortices and induce secondary vortices. The turbulent kinetic energy in the riblet valley is sufficiently small to compensate the increased wetted area of the riblets. In addition, in the logarithmic region, the turbulent kinetic energy are small or almost equal to that of a smooth flat plato. For the drag increasing case ($s^+=40.6$), however, the streamwise vortices move into the riblet valley freely, interacting directly with the riblet inner surface. The penetration of the high-speed in-rush flow on the riblets increases tho skin-friction. The turbulent kinetic energy is increased in the riblet valleys and even in the outer region compared to that over a flat plate.

Control of Turbulent Curved Channel Flow for Drag Reduction (항력저감을 위한 굽은 난류채널 유동제어)

  • Choe, Jeong-Il;Seong, Hyeong-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.9
    • /
    • pp.1302-1310
    • /
    • 2002
  • A direct numerical simulation in turbulent curved channel flow is performed. The drifting Taylor-Gortler vortices are identified by applying a conditional averaging. A new algorithm is proposed based on the wavelet transform of the wall information. A continuous wavelet transform with Marr wavelets is employed to decompose the flow signals at a chosen length scale. An active cancellation is applied to attenuate the Taylor-Gortler vortices and to reduce the wall skin friction.