• Title/Summary/Keyword: Friction anisotropy

Search Result 34, Processing Time 0.018 seconds

A Reliability Study on Estimating Shear Strength of Marine Soil using CPT (Cone 관입시험을 이용한 해양토질의 전단강도 산정에 대한 신뢰도 연구)

  • 이인모;이명재
    • Geotechnical Engineering
    • /
    • v.3 no.2
    • /
    • pp.17-28
    • /
    • 1987
  • Reliability of the cone penetration test (CPT) for estimating shear strength of marine soils is investigated in this paper. For sands, the uncertainty about the angle of internal friction is analyzed. It includes the spatial variation of the soil and the model error in the equation used for interpretation. The most serious uncertainty encountered was the error in the interpretative models. Different methods of interpretation gave quite different values. Subjective opinion was introduced to combine all the interpretative models in a systematic manner. For clays, the undrained Shear Strength from the CPT results is usually =derived by empirical correlations between cone resistance and untrained shear strength from laboratory tests or field vane tests, expressed in terms of cone factor and function of overburden pressure. The uncertainty of the undrained shear strength is caused by data scatter of the cone factor in the correlation, model error of the cone factor, effect of anisotropy, and spatial variability of cone resistance. Among these uncertainties, the most serious one was the data scatter of the cone factor in the .correlation. Between the laboratory test and the field vane test used for correlation, the field vane test was more reliable.

  • PDF

Probabilistic Strength Assessment of Ice Specimen considering Spatial Variation of Material Properties (물성치의 공간분포를 고려한 빙 시험편의 확률론적 강도평가)

  • Kim, Hojoon;Kim, Yooil
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.57 no.2
    • /
    • pp.80-87
    • /
    • 2020
  • As the Arctic sea ice decreases due to various reasons such as global warming, the demand for ships and offshore structures operating in the Arctic region is steadily increasing. In the case of sea ice, the anisotropy is caused by the uncertainty inside the material. For most of the research, nevertheless, estimating the ice load has been treated deterministically. With regard to this, in this paper, a four-point bending strength analysis of an ice specimen was attempted using a stochastic finite element method. First, spatial distribution of the material properties used in the yield criterion was assumed to be a multivariate Gaussian random field. After that, a direct method, which is a sort of stochastic finite element method, and a sensitivity method using the sensitivity of response for random variables were proposed for calculating the probabilistic distribution of ice specimen strength. A parametric study was conducted with different mean vectors and correlation lengths for each material property used in the above procedure. The calculation time was about ten seconds for the direct method and about three minutes for the sensitivity methods. As the cohesion and correlation length increased, the mean value of the critical load and the standard deviation increased. On the contrary, they decreased as the friction angle increased. Also, in all cases, the direct and sensitivity methods yielded very similar results.

Failure Function of Transversely Isotropic Rock Based on Cassini Oval (Cassini 난형곡선을 활용한 횡등방성 암석 파괴함수)

  • Lee, Youn-Kyou
    • Tunnel and Underground Space
    • /
    • v.27 no.4
    • /
    • pp.243-252
    • /
    • 2017
  • Since the failure behavior of transversely isotropic rocks is significantly different from that of isotropic rocks, it is necessary to develop a transversely isotropic rock failure function in order to evaluate the stability of rock structures constructed in transversely isotropic rock masses. In this study, a spatial distribution function for strength parameters of transversely isotropic rocks is proposed, which is based on the Cassini oval curve proposed by 17th century astronomer Giovanni Domenico Cassini to model the orbit of the Sun around the Earth. The proposed distribution function consists of two model parameters which could be identified through triaxial compression tests on transversely isotropic rock samples. The original Mohr-Coulomb (M-C) failure function is extended to a three-dimensional transversely isotropic M-C failure function by employing the proposed strength parameter distribution function for the spatial distributions of the friction angle and cohesion. In order to verify the suitability of the transversely isotropic M-C failure function, both the conventional triaxial compression and true triaxial compression tests of transversely isotropic rock samples are simulated. The predicted results from the numerical experiments are consistent with the failure behavior of transversely isotropic rocks observed in the actual laboratory tests. In addition, the simulated result of true triaxial compression tests hints that the dependence of rock strength on intermediate principal stress may be closely related to the distribution of the microstructures included in the rock samples.

Assessment of Rock Mass Strength Using Three-Dimensional Numerical Analysis with the Distinct Element Method (개별요소법 기반의 삼차원 수치해석을 통한 절리성 암반의 강도특성 평가)

  • Junbong Bae;Jeong-Gi Um;Hoyoung Jeong
    • The Journal of Engineering Geology
    • /
    • v.33 no.4
    • /
    • pp.573-586
    • /
    • 2023
  • Joints or weak planes can induce anisotropy in the strength and deformability of fractured rock masses. Comprehending this anisotropic behavior is crucial to engineering geology. This study used plaster as a friction material to mold specimens with a single joint. The strength and deformability of the specimens were measured in true triaxial compression tests. The measured results were compared with three-dimensional numerical analysis based on the distinct element method, conducted under identical conditions, to assess the reliability of the modeled values. The numerical results highlight that the principal stress conditions in the field, in conjunction with joint orientations, are crucial factors to the study of the strength and deformability of fractured rock masses. The strength of a transversely isotropic rock mass derived numerically considering changes in the dip angle of the joint notably increases as the intermediate principal stress increases. This increment varies depending on the dip of the joint. Moreover, the interplay between the dip direction of the joint and the two horizontal principal stress directions dictates the strength of the transversely isotropic rock mass. For a rock mass with two joint sets, the set with the steeper dip angle governs the overall strength. If a rock bridge effect occurs owing to the limited continuity of one of the joint sets, the orientation of the set with longer continuity dominates the strength of the entire rock mass. Although conventional three-dimensional failure criteria for fractured rock masses have limited applicability in the field, supplementing them with numerical analysis proves highly beneficial.