• 제목/요약/키워드: Friction Torque

검색결과 376건 처리시간 0.029초

Effect of the Power Steering System Driving Torque on Vehicle Fuel Economy in a Passenger Car (Power Steering System의 구동력이 차량 모드주행연비에 미치는 영향)

  • Kim Namkyun;Han Changho;Kim Wooseok;Lee Jonghwa;Park Jinil;Park Kyungseok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • 제14권1호
    • /
    • pp.60-67
    • /
    • 2006
  • To improve the vehicle fuel economy, various technologies have been studied. Meanwhile it deteriorates fuel economy that the increased driving torque for Power Steering System (PSS) due to weighted vehicle and widened tire for low speed driving and parking. So the larger driving torque for PSS is, the lower fuel economy is. Therefore, the study about the effect of the driving torque for PSS and the engine total friction must be preceded to improve the vehicle fuel economy. In this study, a PSS module separated from the vehicle is used to measure the driving torque for PSS with respect to the pressure of PSS. The result shows that the driving torque for PSS was in direct proportion to the pressure of PSS 3 (N-m) driving torque for PSS vs. 10 (bar) pressure of PSS, and 8 (N-m) vs. 40 (bar). In addition, the driving torque and pressure for PSS was measured according to the engine speed in the component test condition which was in the vehicle condition. Measuring the driving torque for PSP in the vehicle condition was established by using the VeFAS which was a fuel economy analyzer developed in our lab and installing PSS By-pass line. The effect of the driving torque for PSS on the vehicle fuel economy was analyzed with FTP-75 cold start mode.

A Study on the Friction Force Onaracteristics of Valve Train System in Gasoline Engine (가솔린기관의 밸브트레인 마찰특성)

  • 윤정의;이만희;김재석
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 한국윤활학회 1998년도 제28회 추계학술대회
    • /
    • pp.30-37
    • /
    • 1998
  • It is well known that reduction of friction loss due to the valve train system greatly affects on improvement of fuel economy in internal combustion engine. In order to investigate friction characteristics of valve train system we carried out friction force measurement using test rig developed by ourselves. From test results, we concluded that characteristics of lubrication and friction torque on the valve train system such as mixed and hydrodynamic was mainly governed the contact type between cam and tappet.

  • PDF

A Study on the Effect of the Components of Cutting Resistance upon Friction between Drill and Inside Wall of Drilled Hole in Drilling (Drill가공시 Drill과 가공구명내벽과의 마찰이 절삭저항성분에 미치는 영향)

  • Koo, Youn-Yoog
    • Journal of the Korean Society for Precision Engineering
    • /
    • 제2권3호
    • /
    • pp.28-40
    • /
    • 1985
  • In this study, to check up on the effect of the components of cutting resistance upon friction between drill and inside wall of hole in drilling, the experiment was performed with individual specimen of carbon steel, cast iron, aluminium alloy under various cutting conditions: depth of hole, cutting speed, feed rate, shape and material of specimen. On the basis of the experimental results, the following conclusions are drawn; 1. The components of cutting resis- tance were increased in proportion to the increase of depth of hole owing to frictional resistance of drill margin and chip-jamming. 2. As feed rates increase, torque and thrust were increased. When comparing to the increasing rate for these components respecitively, thrust is higher tendency than torque. 3. As drill diameter increase, torque and thrust were increased. When comparing to the increasing rate for these components respectively, torque is higher tendency than thrust. 4. In the case of torque, the frictional resistance between drill margin and inside wall of drilled hole accounts for about 20 percent of carbon steel, 14 of cast iron, 10 aluminium alloy in drilling. But the effect of thrust force could be negligible. 5. Comparison between the theoretical and experimental results showed a close agreement so far as depth of hole is about three times of drill diameter. But there was a wide difference between them beyond the rane of three times, because of characteristics of the drilling process.

  • PDF

Effects of Cooling Flow Rate on Gas Foil Thrust Bearing Performance (냉각 유량이 가스 포일 스러스트 베어링의 성능에 미치는 영향)

  • Sung Ho Hwnag;Dae Yeon Kim;Tae Ho Kim
    • Tribology and Lubricants
    • /
    • 제39권2호
    • /
    • pp.76-80
    • /
    • 2023
  • This paper describes an experimental investigation of the effect of cooling flow rate on gas foil thrust bearing (GFTB) performance. In a newly developed GFTB test rig, a non-contact type pneumatic cylinder provides static loads to the test GFTB and a high-speed motor rotates a thrust runner up to the maximum speed of 80 krpm. Force sensor, torque arm connected to another force sensor, and thermocouples measures the applied static load, drag torque, and bearing temperature, respectively, for cooling flow rates of 0, 25, and 50 LPM at static loads of 50, 100, and 150 N. The test GFTB with the outer radius of 31.5 mm has six top foils supported on bump foil structures. During the series of tests, the transient responses of the bearing drag torque and bearing temperature are recorded until the bearing temperature converges with time for each cooling flow rate and static load. The test data show that the converged temperature decreases with increasing cooling flow rate and increases with increasing static load. The drag torque and friction coefficient decrease with increasing cooling flow rate, which may be attributed to the decrease in viscosity and lubricant (air) temperature. These test results suggest that an increase in cooling flow rate improves GFTB performance.

Experimental Analysis of an Automatic Transmission Clutch Disk Friction Characteristics (자동변속기 클러치 디스크 마찰특성의 실험적 분석)

  • Jung, Gyu Hong;Park, Dong Hoon;Na, Doo Hyun
    • Journal of Drive and Control
    • /
    • 제15권3호
    • /
    • pp.14-20
    • /
    • 2018
  • Wet clutches in an automatic transmission enable the transmission of the engine power by the frictional torque experienced and noted between disk and plates. Since the clutch frictional torque considerably affects the shift quality of an automatic transmission as well as the durability of the machinery, its friction characteristics must be carefully examined to meet the design requirements. The SAE No. 2 friction test machine is a well-known standard to evaluate mainly the friction characteristics of plate clutches along with the required automatic transmission fluids. This paper reviews the experimental analysis of the wet clutch friction characteristics by using the exclusively developed clutch test machine which is capable of controlling the clutch test procedure, in accordance with the applicable test standard and processing of the experimental data automatically. As the clutch test machine is designed for the accommodation of dual clutches which is applied to the real transmission, it can evaluate not only the clutch friction characteristics, but also an actuation performance of a measured clutch piston. In respect to friction characteristics involving dynamic friction coefficients, the energy absorbed in a clutch disk and the recorded temperatures of clutch plates during braking actions and procedures are also investigated. Additionally, the change of friction coefficients by the use of the repeated clutch application is also observed with the endurance test functions of an accurately calibrated and dedicated clutch test machine.

Modeling dynamic interactions between the support foot and the ground in bipedal walking

  • Jung, Moon-Ryul
    • Journal of the Korea Computer Graphics Society
    • /
    • 제1권2호
    • /
    • pp.201-212
    • /
    • 1995
  • This paper presents a new method of dynamics-based synthesis of bipedal, especially human, walking. The motion of the body at a time point is determined by ground reaction force and torque under the support foot and joint torques of the body at that time point. Motion synthesis involves specifying conditions that constrain ground reaction force and torque, and joint torques so that a given desired motion may be achieved. There are conditions on a desired motion which end-users can think of easily, e.g. the goal position and orientation of the swing foot for a single step and the time period of a single step. In this paper, we specify constraints on the motion of the support foot, which end-users would find difficult to specify. They are constraints which enforce non-sliding, non-falling, and non-spinning the support foot. They are specified in terms of joint torques and ground reaction force and torque. To satisfy them, both joint torques and ground reaction force and torque should be determined appropriately. The constraints on the support foot themselves do not give any good clues as to how to determine ground reaction force and torque. For that purpose, we specify desired trajectories of the application point of vertical ground reaction force (ground pressure) and the application point of horizontal ground reaction (friction) force. The application points of vertical pressure and friction force are good control variables, because they are indicators to kinds of walking motions to synthesize. The synthesis of a bipedal walking motion, then, consists of finding a trajectory of joint torques to achieve a given desired motion, so that the constraints are satisfied under the condition of the prescribed center of pressure and center of friction. Our approach is distinguished from many other approaches, e.g. the inverted-pendulum approach, in that it captures and formulates dynamics of the support foot and reasonable constraints on it.

  • PDF

Development of Rolling Speed Set-up Model for the Travelling Stability in Hot Strip Finishing Mill (열간사상압연 통판안정성 개선을 위한 속도설정모델 개발)

  • 문영훈;김영환
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 한국소성가공학회 1999년도 제3회 압연심포지엄 논문집 압연기술의 미래개척 (Exploitation of Future Rolling Technologies)
    • /
    • pp.47-56
    • /
    • 1999
  • New rolling speed prediction model has been developed for the precise presetting rolling speed of each finishing mill stand in the tandem hot strip mill. Those factors such as neutral point, work roll diameter, rolling torque, friction coefficient, bite angle and the thickness at each side of entry and deliver of the rolls were taken into account. To consider width effect on forward slip, calibration factors obtained from rolling torque has been added to new prediction model and refining method has also been developed to reduce the speed unbalance between adjacent stands. The application of the new model showed a good agreement in rolling speeds between the predictions and the actual measurements, and the standard deviation of prediction error has also been significantly reduced.

  • PDF

Prediction of Vehicle Fuel Consumption on a Component Basis (가솔린 차량의 각 요소별 연료소모량 예측)

  • 송해박;유정철;이종화;박경석
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • 제11권2호
    • /
    • pp.203-210
    • /
    • 2003
  • A simulation study was carried to analyze the vehicle fuel consumption on component basis. Experiments was also carried out to identify the simulation results, under FTP-75 Hot Phase driving conditions. and arbitrary driving conditions. A good quantitative agreement was obtained. Based on the simulation, fuel energy was used in pumping loss(3.7%), electric power generation(0.7%), engine friction(12.7%), engine inertia(0.7%), torque converter loss(4.6%), drivetrain friction(0.6%), road-load(9.2%), and vehicle inertia(13.4%) under FTP-75 Hot Phase driving conditions. Using simulation program, the effects of capacity factor and idle speed on fuel consumption were estimated. A increment of capacity factor of torque converter resulted in fuel consumption improvement under FTP-75 Hot Phase driving conditions. Effect of a decrement of idle speed on fuel consumption was negligible under the identical driving conditions.

An Experimental Study of the Friction and Temperature Characteristics of Engine Crankshaft Bearings (엔진 크랭크새프트 베어링의 마찰 및 온도 특성에 대한 실험적 연구)

  • 조명래;문호지;장인배;한동철
    • Tribology and Lubricants
    • /
    • 제11권1호
    • /
    • pp.44-49
    • /
    • 1995
  • Friction characteristic of an engine crankshaft bearing is affected by revolution speed, applied loads, and viscosity of lubrication. So, experimental investigation is required to observe the friction characteristics using these factors. Hydraulic cylinder, servo controller system which can be modified the applied load, and test rig for the observation of the characteristics of engine crankshaft bearings were designed and fabricated, and some experiments were performed. Friction torque, journal locus and circumferential temperature variation of crankshaft bearing were measured according to applied load, revolution speed, and oil inlet temperature.

An Experimental Study of the Friction and Temperature characteristics of Engine Crankshaft Bearings (엔진 크랭크샤프트 베어링에 대한 마찰 및 온도 특성에 대한 실험적 연구)

  • 조명래;문회지;장인배;한동철
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 한국윤활학회 1993년도 제18회 학술대회 초록집
    • /
    • pp.57-62
    • /
    • 1993
  • To increase the fuel economy, a reduction of friction loss is important in engines. Experimental investigations have been required for reducing the friction loss of crankshaft bearings. Hydraulic cylinder, and servo control ler system which modified the applied load, and test rig for the observation of the characteristics of engine crankshaft bearings were designed and fabricated. Experiment is performed. Friction torque, journal locus and circumferential temperature variations of crankshaft bearings were measured with appling load, revolution speed, and oil inlet temperature, etc.

  • PDF