• Title/Summary/Keyword: Friction Energy

검색결과 882건 처리시간 0.026초

접착방지막과 접착막을 동시에 적용한 대면적 Au/Pd 트랜스퍼 프린팅 공정 개발 (Development of the Large-area Au/Pd Transfer-printing Process Applying Both the Anti-Adhesion and Adhesion Layers)

  • 차남구
    • 한국재료학회지
    • /
    • 제19권8호
    • /
    • pp.437-442
    • /
    • 2009
  • This paper describes an improved strategy for controlling the adhesion force using both the antiadhesion and adhesion layers for a successful large-area transfer process. An MPTMS (3-mercaptopropyltrimethoxysilane) monolayer as an adhesion layer for Au/Pd thin films was deposited on Si substrates by vapor self assembly monolayer (VSAM) method. Contact angle, surface energy, film thickness, friction force, and roughness were considered for finding the optimized conditions. The sputtered Au/Pd ($\sim$17 nm) layer on the PDMS stamp without the anti-adhesion layer showed poor transfer results due to the high adhesion between sputtered Au/Pd and PDMS. In order to reduce the adhesion between Au/Pd and PDMS, an anti-adhesion monolayer was coated on the PDMS stamp using FOTS (perfluorooctyltrichlorosilane) after $O_2$ plasma treatment. The transfer process with the anti-adhesion layer gave good transfer results over a large area (20 mm $\times$ 20 mm) without pattern loss or distortion. To investigate the applied pressure effect, the PDMS stamp was sandwiched after 90$^{\circ}$ rotation on the MPTMS-coated patterned Si substrate with 1-${\mu}m$ depth. The sputtered Au/Pd was transferred onto the contact area, making square metal patterns on the top of the patterned Si structures. Applying low pressure helped to remove voids and to make conformal contact; however, high pressure yielded irregular transfer results due to PDMS stamp deformation. One of key parameters to success of this transfer process is the controllability of the adhesion force between the stamp and the target substrate. This technique offers high reliability during the transfer process, which suggests a potential building method for future functional structures.

지지격자가 봉다발 난류유동에 미치는 영향 (Spacer Grid Effects on Turbulent Flow in Rod Bundles)

  • Yang, Sun-Kyu;Chung, Moon-Ki
    • Nuclear Engineering and Technology
    • /
    • 제28권1호
    • /
    • pp.56-71
    • /
    • 1996
  • 지지격자를 갖는 5$\times$5 핵연료 봉다발부수로내에서 국부 수력특성인자들을 레이저 유속측정장치인 LDV(Laser Doppler Velocimeter)를 이용하여 측정하였다. 이 연구는 지지격자가 봉다발 난류유동구조에 미치는 영향에 관한 연구에 관점을 두었다. 축방향속도, 난류강도, 편이도, 편평도 등의 측정인자들을 측정하였다. 압력강하를 측정하여 지지격자의 손실계수와 봉다발의 마찰계수를 구하였다 실험결과로부터 활발한 난류혼합거리는 지지격자로부터 x/D$_{h}$=10까지이고, 강제 혼합거리는 지지격자로부터 x/D$_{h}$=20까지임이 관찰되었다. 지지격자하류에서의 축방향 난류강도 감쇄거동은 mesh격자나 screen을 통과하는 난류유동과 같은 경향을 보여주었다. 측정된 자료로부터 부수로해석 code에 입력함수로 적용할 수 있는 국부 난류혼합계수상관식을 구하였다. 국부 혼합계수분포 경향을 관찰하여보면 지지격자 근처에서 최대값을 보이고, 하류방향으로 진행하면서 안정된 값을 갖는다.

  • PDF

경주지역에서 발생한 3개 지진의 지진원 및 지진파전파 매질특성에 관한 연구 (Optimal Design of Friction Dampers based on the Story Shear Force Distribution of a Building Structure)

  • 정제원;김준경
    • 한국지진공학회논문집
    • /
    • 제10권1호
    • /
    • pp.33-39
    • /
    • 2006
  • 본 연구는 경주부근에서 일어난 3개의 지진 (1999년 4월 24일, 규모 3.3, 6개 관측소; 1999년 6월 2일, 규모 4.0, 14개 관측소; 1999년 9월 12일, 규모 3.2, 7개 관측소)으로부터 27개의 관측된 지반진동 자료를 이용하여 지진원 및 지진파감쇄특성 변수값을 분석하였다. 본 연구에서는 구하고자 하는 모든 값을 동시에 비선형적으로 분석하기 위해 LM (Levenberg -Marquardt) 역산방법을 적용하였고 전단파 에너지를 이용하였다. 3개지진의 평균 응력강하값은 약48-bar이고 본 연구에 이용된 모든 관측소 부지부근 지진파감쇄 ${\kappa}$값의 평균은 0.0312-sec로 분석되었다. 또한 광역 지진파감쇄값인 Qo 과 ${\eta}$값은 각각 417 및 0.83으로 분석되었다. 특히 지진파감쇄 ${\kappa}$값은 미국 동부지역 대푯값 보다 훨씬 크고 미국 서부지역 대푯값 보다 약간 작은 값을 보여주고 있어 관측소 부지증폭 특성에 대한 분석자료가 있으면 보다 의미있는 결과를 얻을 수 있다고 판단된다. 본 연구에서 분석된 지진원 및 지진파감쇄 특성 변수값들은 지배방정식의 차이 등으로 인해 기존의 연구결과와 일부 파라메타값에 있어서 다소 커다란 차이를 보여주고 있다.

수리실험을 이용한 지하유입시설 유입구 형상에 따른 수리학적 특성 분석 (Study of Hydraulic Characteristics with the Shape of the Intake of an Underground Inflow Facility using Hydraulic Experiments)

  • 성호제;박인환;이동섭
    • 한국안전학회지
    • /
    • 제33권4호
    • /
    • pp.119-126
    • /
    • 2018
  • In recent years, as flood damage caused by heavy rains increased, the great-depth tunnel using urban underground space is emerging as a countermeasure of urban inundation. The great-depth tunnel is used to reduce urban inundation by using the underground space. The drainage efficiency of great-depth tunnel depends on the intake design, which leads to increase discharge into the underground space. The spiral intake and the tangential intake are commonly used for the inlet facility. The spiral intake creates a vortex flow along the drop shaft and reduces an energy of the flow by the wall friction. In the tangential intake, flow simply falls down into the drop shaft, and the design is simple to construct compared to the spiral intake. In the case of the spiral intake, the water level at the drop shaft entrance is risen due to the chocking induced by the flowrate increase. The drainage efficiency of the tangential intake decreases because the flow is not sufficiently accelerated under low flow conditions. Therefore, to compensate disadvantages of the previously suggested intake design, the multi-stage intake was developed which can stably withdraw water even under a low flow rate below the design flow rate. The hydraulic characteristics in the multi-stage intake were analyzed by changing the flow rate to compare the drainage performance according to the intake design. From the measurements, the drainage efficiency was improved in both the low and high flow rate conditions when the multi-stage inlet was employed.

관성용접(慣性熔接)된 이종재질(異種材質) IN713C-SAE8630의 용접성능(熔接性能)에 회전속도(回轉速度)가 미치는 영향(影響) (Effects of Rotational Velocity on Weld Character of Inertia-Welded IN713C-SAE8630)

  • 오세규
    • 대한조선학회지
    • /
    • 제9권2호
    • /
    • pp.43-48
    • /
    • 1972
  • Inertia friction welding, a relatively recent innovation in the art of joining materials, is a forge-welding process that releases kinetic energy stored in the flywheel as frictional heat when two parts are rubbed together under the right conditions. In a comparatively short time, the process has become a reliable method for joining ferrous, and dissimilar metals. The process is based on thrusting one part, attached to a flywheel and rotating at a relatively high speed, against a stationary part. The contacting surfaces, heated to plastic temperatures, are forged together to produce a reliable, high-strength weld. Welds are made with little or no workpiece preparation and without filler metal or fluxes. However, In order to obtain a good weld, the determination of the optimum weld parameters is an important problem. Especially, because the amount of the flywheel mass will be determined according to the initial rotating velocity values at the constant thrust load, the initial rotating velocity is an important factor to affect a weld character of the inertia-welded IN713C-SAE8630, which is used for the wheel-shafts of turbine rotors or turbochargers, exhausting valves, etc. In this paper, the effects of initial rotational velocity on a weld character of inertia-welded IN713C-SAE8630 was studied through considerations of weld parameters determination, micro-structural observations and tensile tests. The results are as the following: 1) As initial rotating velocity was reduced to 267 FPM, cracks and carbide stringers were completely eliminated in the micro-structure of welded zone. 2) As initial rotating velocity was reduced and flywheel mass was increased correspondingly, the maximum welding temperatures were decreased and the plastic working in the weld zone was increased. 3) As initial rotating velocity was progressively decreased and carbides were decreased, the tensile strengths were increased. 4) And also the fracture location moved out of the weld zone and the tensile tests produced, the failures only in the cast superalloy IN713C which do not extend into the weld area. 5) The proper initial rotating velocity could be determined as about 250 thru 350 FPM for the better weld character.

  • PDF

비접촉식 자전거 발전기 및 충전 시스템 개발에 관한 연구 (A study on the contactless generator and recharge system for a bicyle)

  • 박황근;원시태
    • Design & Manufacturing
    • /
    • 제11권2호
    • /
    • pp.29-36
    • /
    • 2017
  • In this study, the non-contact type bicycle generator system considering the recharge is developed to use the eco-friendly energy source when the bicycle is operating. The following three main factors are considered in this study. One of factors is that the intensity of the rotating magnet is in the range of 2,700~4,300 [Gause]. The next factor is that the separation distance of rotating magnet and bicycle rim is in the range of 1.5-3.0 mm. The last factor is that the pedaling speed is in the range of 55 RPM [Wheel speed 5.6Km]~150 RPM [Wheel speed 15.25Km] consirering with the 5 staged gear transmission. The obtained results are as followed. (1) The generator output voltage gradually increases from 3V to 10V with the pedaling speed increases, at the separation distance is less than 2.5 mm and the operating voltage of the LED lamp is generated at a pedaling speed of 60 RPM or more. (2) The output current of the generator increases from 20mA to 40mA with the pedaling speed increases, at a separation distance is less than 2.0 mm and the operating current of the LED lamp is generated at a pedaling speed of 60 RPM or more. (3) When the separation distance was 3.0 mm, the output voltage and current are significantly lower than those of the bicycle LED lamp is generated. (4) The charging time is expected to be 12.24 ~ 17.65 hours when the magnitude of the magnet is 3,400[Gauss] at a pedaling speed of 55 RPM or more. (5) As a result of this study, it is thought that the non-contact type bicycle generator system considering the recharge can replace the conventional friction power generation system.

대형 디젤엔진 내구 시험에 의한 다른 종류 엔진오일의 물성 및 성능 특성에 관한 연구 (A Study on the Property and Performance Characteristics of Different Kind Engine Oil by Endurance Test of Heavy-duty Diesel Engine)

  • 이민호;김정환;송호영;김기호;하종한
    • 한국자동차공학회논문집
    • /
    • 제22권7호
    • /
    • pp.48-56
    • /
    • 2014
  • Engine oil is an oil used for lubrication of various internal combustion engines. The main function is to reduce wear on moving parts; it also cleans, inhibits corrosion, improves sealing, and cools the engine by carrying heat away from moving parts. In engines, there are parts which move against each other. Otherwise, the friction wastes the useful power by converting the kinetic energy to heat. Those parts were worn away, which could lead to lower efficiency and degradation of the engine. It increases fuel consumption, decreases power output, and can induce the engine failure. This study was conducted to evaluate the relation between engine oil property changes and engine performance for the diesel engine. This test was performed by using 12L, 6 cylinder, heavy duty engines. Low SAPS 10W30 engine oil (two type engine oils) was used. Test procedure and method was in accordance with the modified CEC L-57-T97 (OM441LA) method. In this study, TAN, TBN, KV and metal components, engine power, blowby gas, A_F were presented to evaluate the relation with engine oil property changes and engine performance. TAN, TBN, KV and metal We found that the components were generally increased but engine performance did not change. This results mean that property changes did not affect on engine performance because those were not enough to affect engine performance.

신발 분야 국내외 운동역학 연구동향 분석: 2015-2019년에 발간된 연구를 중심으로 (Analysis of Domestic and International Biomechanics Research Trends in Shoes: Focusing on Research Published in 2015-2019)

  • Back, Heeyoung;Yi, Kyungock;Lee, Jusung;Kim, Jieung;Moon, Jeheon
    • 한국운동역학회지
    • /
    • 제30권2호
    • /
    • pp.185-195
    • /
    • 2020
  • Objective: The purpose of this study was to identify recent domestic and international research trends regarding shoes carried out in biomechanics field and to suggest the direction of shoe research later. Method: To achieve this goal of research, the Web of Science, Scopus, PubMed, Korea Education and Research Information Service and Korean Citation Index were searched to identify trends in 64 domestic and international research. Also, classified into the interaction of the human body, usability evaluation of functional shoes, smart shoe development research, and suggested the following are the suggestions for future research directions. Conclusion: A study for the coordination of muscle activity, control of motion and prevention of injury should be sought by developing shoes of eco-friendly materials, and scientific evidence such as physical aspects, materials, floor shapes and friction should be supported. Second, a study on elite athletes in various sports is needed based on functional shoes using new materials to improve their performance along with cooperation in muscle activities and prevention of injury. Third, various information and energy production are possible in real time through human behavioral information, and the application of Human Machine Interface (HMI) technology through shoe-sensor-human interaction should be explored.

Experiments on granular flow in a hexagonal silo: a design that minimizes dynamic stresses

  • Hernandez-Cordero, Juan;Zenit, R.;Geffroy, E.;Mena, B.;Huilgol, R.R.
    • Korea-Australia Rheology Journal
    • /
    • 제12권1호
    • /
    • pp.55-67
    • /
    • 2000
  • In this paper, an experimental study of the rheological behavior of granular flow in a new type of storage silo is presented. The main characteristic of the new design is a hexagonal shape chosen with the objective of minimizing the stresses applied to the stored grains, and to reduce grain damage during the filling and emptying processes. Measurements of stress distribution and flow patterns are shown for a variety of granular materials. Because of the design of the silo, the granular material adopts its natural rest angle at all times eliminating collisional stresses and impacts between grains. A homogeneous, low friction flow is naturally achieved which provides a controlled stress distribution throughout the silo during filling and emptying. Secondary dynamic stresses, which are responsible for wall failure in conventional silos of the vertical type, are completely eliminated. A comparison between the two geometries is presented with data obtained for these silos and a number of granular materials. The discharge pattern inhibits powder formation in the silo and the filling system virtually eliminates unwanted material packing. Finally, notwithstanding the rheological advantages of this new design, the hexagonal cells that constitute the silo have many other advantages, such as the possible use of solar energy to control the humidity inside them. The cell type design allows for versatile storage capabilities and the elevation above the ground provides unlimited transportation facilities during emptying.

  • PDF

Adhesive Behaviors of the Aluminum Alloy-Based CrN and TiN Coating Films for Ocean Plant

  • Murakami, Ri-Ichi;Yahya, Syed Qamma Bin
    • International Journal of Ocean System Engineering
    • /
    • 제2권2호
    • /
    • pp.106-115
    • /
    • 2012
  • In the present study, TiN and CrN films were coated by arc ion plating equipment onto aluminum alloy substrate, A2024. The film thickness was about 4.65 ${\mu}m$. TiN and CrN films were analyzed by X-ray diffraction and energy dispersive X-ray equipments. The Young's modulus and the micro-Vickers hardness of aluminum substrate were modified by the ceramic film coatings. The difference in Young's modulus between substrate and coating film would affect on the wear resistance. The critical load, Lc, was 75.8 N for TiN and 85.5 N for CrN. It indicated from the observation of optical micrographs for TiN and CrN films that lots of cracks widely propagated toward the both sides of scratch track in the early stage of MODE I. TiN film began to delaminate completely at MODE II stage. The substrate was finally glittered at MODE III stage. For CrN film, a few crack can be observed at MODE I stage. The delamination of film was not still occurred at MODE II and then was happened at MODE III. This agrees with critical load measurement which the adhesive strength was greater for CrN film than for TiN film. Consequently, it was difficult for CrN to delaminate because the adhesive strength was excellent against Al substrate. The wear process, which the film adheres and the ball transfers, could be enhanced because of the increase in loading. The wear weight of ball was less for CrN than for TiN. This means that the wear damage of ball was greater for TiN than for CrN film. It is also obvious that it was difficult to delaminate because the CrN coating film has high toughness. The coefficient of friction was less for CrN coating film than for TiN film.