• 제목/요약/키워드: Friction Coefficients

Search Result 583, Processing Time 0.026 seconds

Estimation of Friction Coefficient in Permeability Parameter of Perforated Wall with Vertical Slits (연직 슬릿 유공벽의 투수 매개변수의 마찰계수 산정)

  • Kim, Yeul-Woo;Suh, Kyung-Duck;Ji, Chang-Hwan
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.22 no.1
    • /
    • pp.25-33
    • /
    • 2010
  • The matching condition at a perforated wall with vertical slits involves the permeability parameter, which can be calculated by two different methods. One expresses the permeability parameter in terms of energy dissipation coefficient and jet length at the perforated wall, being advantageous in that all the related variables are known, but it gives wrong result in the limit of long waves. The other expresses the permeability parameter in terms of friction coefficient and inertia coefficient, giving correct result from short to long waves, but the friction coefficient should be determined on the basis of a best fit between measured and predicted values of such hydrodynamic coefficients as reflection and transmission coefficients. In the present study, an empirical formula for the friction coefficient is proposed in terms of known variables, i.e., the porosity and thickness of the perforated wall and the water depth. This enables direct estimation of the friction coefficient without invoking a best fit procedure. To obtain the empirical formula, hydraulic experiments are carried out, the results of which are used along with other researchers' results. The proposed formula is used to predict the reflection and transmission coefficients of a curtain-wall-pile breakwater, the upper part of which is a curtain wall and the lower part consisting of a perforated wall with vertical slits. The concurrence between the experimental data and calculated results is good, verifying the appropriateness of the proposed formula.

A Study on the Width Spread in Flat Rolling of Spring Steel (스프링강의 판압연시 폭확대에 관한 연구)

  • Park, Jae-Suk;Choi, Woon;Nam, Seung-Eui
    • Transactions of Materials Processing
    • /
    • v.4 no.2
    • /
    • pp.151-158
    • /
    • 1995
  • In this study, the width spreads of spring steel including Mn-Cr steel(SUP 9A), Mn-Cr-V steel(SUP 11A), and Si-Cr steel(SAE 9254) and were investigated under different reduction ratios and thickness-width ratios friction coefficients. The experimental results were compared with the theoretical prediction by the Ekelund equation, Geuze equations, etc. The width spreads of the three spring steels were found to be 10-15% larger than mild steel, and the optimal reduction ratio for the spring steel was found in a range from 20 to30%. Among the spring steels, the width spread of Mn-Cr-V steel was measured to be the largest followed by those of Si-Cr steel and Mn-Cr steel. It was found that the width spread increased with friction coefficient, width-thickness ratio and reduction ratio as predicted. However, the theoretical predictions revealed smaller width spread than the experimental results. This finding indicates that the coefficients of the width spread of the theoretical models need to be modified in order to predict the actual behavior of the width spreading of the spring steels. In this study, the coefficients of width spread of the Geuze equation were determined from the experimental results.

  • PDF

Boiling Heat Transfer in a Narrow Rectangular Channel with Offset Strip Fins (오프셋 스트립 휜이 있는 협소 사각유로의 비등열전달)

  • Kim Byong Joo;Jeong Eun Soo;Sohn Byong Hu
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.10
    • /
    • pp.977-983
    • /
    • 2004
  • An experimental study on saturated flow boiling heat transfer of R113 was peformed in a vertical narrow rectangular channel with offset strip fins. Two-phase pressure gradients and boiling heat transfer coefficients in an electrically heated test section were measured in the range of quality $0{\sim}0.6$, mass flux $17{\sim}43kg/m^{2}s$, and heat flux of $500{\sim}3,000W/m^2$ Two-phase friction multipliers were determined as a function of Lockhart-Martinelli parameter. Local boiling heat transfer coefficients were analysed in terms of mass flux, heat flux and local vapor quality. Correlation for boiling heat transfer coefficients was proposed, which was in good agreement with experimental data.

Analysis of Planocentric Gear

  • Kim, H.J.
    • Agricultural and Biosystems Engineering
    • /
    • v.7 no.1
    • /
    • pp.13-17
    • /
    • 2006
  • The planocentric gear, known as wobble mechanism, has been used for speed reducing mechanism as an ingenious mechanism. The modem application can be found in the backrest adjusting mechanism of a vehicle reclinable seat, fluid pumps and aircraft hoist and winches. Higher speed reduction ratios, high load capacity, lower weight, and compactness are the main advantages of this gear. This paper presents velocity and static force analysis to investigate the friction lock of the planocentric gear. The rectilinear tooth profile is used to maximize the speed reduction ratio. The equivalent linkage system is used for the analysis of instantaneous motion. As the results, the transmission efficiency of the planocentric gear is found and the friction lock of the system is determined for the friction coefficients of journals. A numerical example that illustrates the developed analysis is presented.

  • PDF

Wear and friction characteristics of a carbon fiber composite against specular counterpart (탄소 섬유 복합재의 경면 상대재에 대한 마찰 및 마모 특성)

  • YANG BYEONG-CHUN;KOH SUNG-WI
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.390-394
    • /
    • 2004
  • This is the study on dry sliding wear behavior of unidirectional carbon fiber reinforced epoxy matrix composite at ambient temperature. The wear rates and friction coefficients against the stainless steel counterpart specularly processed were experimentally determined and the resulting wear mechanisms were microscopically observed. Three principal sliding directions relative to the dominant fiber orientation in the composite were selected. Wren sliding took place against smooth and hard counterpart, the highest wear resistance and the lowest friction coefficient were observed in the antiparallel direction. When the velocity between the composite and the counterpart went up, the wear rate increased. The fiber destruction and cracking caused fiber bending on the contact surface, which was discovered to be dominant wear mechanism.

  • PDF

Friction and Wear of Pressureless Sintered Ti(C,N)-WC Ceramics

  • Park, Dong-Soo;Yun, Shin-Sang;Han, Byoung-Dong;Kim, Hai-Doo
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.211-212
    • /
    • 2002
  • Friction and wear of pressureless sintered Ti(C,N)-WC ceramics were studied using a ball-on-reciprocating flat apparatus in open air. The silicon nitride ball and the cemented carbide (WC-Co) ball were used against the Ti(C,N)-WC plate samples. The friction coefficients of the Ti(C,N)-WC samples against the silicon nitride ball and the cemented carbide ball were about 0.57 and 0.3, respectively. The wear coefficient of the sample without WC addition was 5 times as large as that of the sample with 10 mole % WC addition when tested against the silicon nitride ball under 98 N. The higher wear coefficient of Ti(C,N)-0WC was explained in part by larger grain size. Wear occurred mainly by grain dislodgment after intergranular cracking mainly caused by the accumulated stress within the grains.

  • PDF

A Study on the Friction Behavior of Natural Rubber

  • Kim, W.D.;Kim, D.J.;Nah, Chang-Woon;Lee, Y.S.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.193-194
    • /
    • 2002
  • The frictional characteristics of natural rubber plates under various conditions including sliding speed, contacted ball size, and lubrication conditions were evaluated experimentally. The frictional force and the normal force were measured by a self-made tester pin and a load cell with strain gages. In the lubrication condition, the effect of sliding speed was not significant over tested speed range. But in the none-lubrication condition, according to increase the sliding speed, the friction coefficient was decreased. The coefficients of friction under various lubrication conditions were varied from 0.03 to 0.32 and under none-lubrication condition was varied from 2.54 to 4.74.

  • PDF

Reducing the friction and the wear of carbon fiber composites with micro-grooves (미소채널 구조를 이용한 탄소 섬유 복합재료 면의 마찰 및 마모 감소)

  • Lee H.G.;Lee D.G.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.855-859
    • /
    • 2005
  • Carbon fiber polymeric composites have been widely used in bearing materials under high pressure without oil-lubrication due to their self-lubricating characteristics. However, the severe wear of carbon composite surface occurs due to the generation of wear debris when the pressure applied on the composite surface is higher than the critical value of composite surface. In this work, in order to remove wear debris continuously during sliding operation, composite specimens with many micro-grooves on their sliding surfaces were devised. To investigate the effect of wear debris on the tribological behavior of carbon/epoxy composites, dry sliding tests were performed with respect to applied pressure using the composite specimens with and without micro-grooves. From the measurement of friction coefficients and wear rates, a model for the effect of wear debris on the friction and wear of composites was proposed.

  • PDF

A Study on the Rotating Flow in an Annulus (환형관내 회전유동에 관한 연구)

  • 김영주;우남섭;황영규
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2003.11a
    • /
    • pp.153-158
    • /
    • 2003
  • This study concerns the characteristics of helical flow in a concentric annulus with a diameter ratio of 0.52 and 0.9, whose outer cylinders are stationary and inner ones are rotating. Pressure losses and skin friction coefficients have been measured for fully developed flows of water and 0.2% aqueous of sodium carboxymethyl cellulose(CMC), respectively, when the inner cylinder rotates at the speed of 0∼500rpm. The effect of rotation on the skin friction is significantly dependent on the flow regime. In all flow regimes, the skin friction coefficient is increased by the inner cylinder rotation. The change of skin friction coefficient corresponding to the variation of rotating speed is large for the laminar flow regime, whereas it becomes smaller as Re increases for the transitional flow regime and, then, it gradually approach to zero for the turbulent flow regime.

  • PDF

Estimation of viscous and Coulomb damping from free-vibration data by a least-squares curve-fitting analysis

  • Slemp, Wesley C.H.;Hallauer, William L. Jr.;Kapania, Rakesh K.
    • Smart Structures and Systems
    • /
    • v.4 no.3
    • /
    • pp.279-290
    • /
    • 2008
  • The modeling and parameter estimation of a damped one-degree-of-freedom mass-spring system is examined. This paper presents a method for estimating the system parameters (damping coefficients and natural frequency) from measured free-vibration motion of a system that is modeled to include both subcritical viscous damping and kinetic Coulomb friction. The method applies a commercially available least-squares curve-fitting software function to fit the known solution of the equations of motion to the measured response. The method was tested through numerical simulation, and it was applied to experimental data collected from a laboratory mass-spring apparatus. The mass of this apparatus translates on linear bearings, which are the primary source of light inherent damping. Results indicate that the curve-fitting method is effective and accurate for both perfect and noisy measurements from a lightly damped mass-spring system.