• Title/Summary/Keyword: Freundlich constant ($K_F$)

Search Result 14, Processing Time 0.02 seconds

제올라이트에 의한 농약의 흡착

  • 감상규;김길성;안병준;이민규
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.04a
    • /
    • pp.7-10
    • /
    • 2001
  • Adsorption of the pesticides (phosphamidon, fenitrothion, triadimefon and diniconazole) in natural zeolite (CL $I_{N}$) and several synthetic zeolites was incestigated. The pesticides were not adsorbed on zeolites (Na-Pl, SOD, ANA, JBW and CAN) synthesized from Jeju scoria. The distribution coefficient ( $K_{D}$) and the Freundlich constant ( $K_{F}$) decreased in the following sequences. FC $C_{W}$ (waste catalytic cracking catalyst)>FA $U_{F}$ (FAU Synthesized from coal fly ash)>(FAU+Na-Pl)$_{SF}$ (the mixture of FAU and Na-Pl synthesized from the ratio of Jeju scoria 6 to coal fly ash 4 by weight)>CL $I_{N}$ among the zeolites; diniconazole>fenitrothion> triadimefon>phosphamidon. As the temperature was increased, the amount of pesticide adsorbed per unit mass of zeolite increased for FC $C_{W}$, FA $U_{F}$ and (FAU+Na-Pl)$_{SF}$ but it decreased for CL $I_{N}$, for all the pesticides used in this study. It was independent of pH for phosphamidon, fenitrothion and triadimefon, but decresed as pH was increased for all the zeolites used in this study.y.udy.y.y.y.y.y.y.

  • PDF

Adsorption and Leaching Characteristics of Ionic Pesticides in the Soils of Jeju Island, Korea (제주도 토양 중 이온계 농약의 흡착 및 용탈 특성)

  • Chun, Si-Bum;Hyun, Ik-Hyun;Kam, Sang-Kyu
    • Journal of Environmental Science International
    • /
    • v.28 no.8
    • /
    • pp.689-700
    • /
    • 2019
  • The adsorption and leaching characteristics of five ionic pesticides including four acidic pesticides (2,4-D, dicamba, MCPA, and MCPP) and one amphoteric pesticide (imazaquin) in agricultural soils were investigated. Soils around spring waters that were heavily affected by pesticide run-off and soils around wells considering the regional characteristics in Jeju Island were collected at 24 stations. The Freundlich constant, $K_F$ value, which is a measure of the adsorption capacity, decreased in the order of 2,4-D > MCPA > MCPP > dicamba > imazaquin. The adsorption capacity of these ionic pesticides decreased with increasing pH owing to the effects of ionization of pesticides and different ionizable functional groups of soils. The leaching of ionic pesticides in the soil column showed a reverse relationship with their adsorption in soils, namely, the ionic pesticides were leached more quickly for the pesticides with lower adsorption capacity. The groundwater contamination potential of the ionic pesticides was evaluated in the order of imazaquin > MCPA > MCPP > dicamba > 2.4-D according to the groundwater ubiquity score based on soil Koc and the half-life of the pesticide.

Adsorption and Leaching Characteristics of Nonionic Pesticides in Soils of Jeju Island, Korea (제주도 토양 중 비이온계 농약의 흡착 및 용탈 특성)

  • Chun, Si-Bum;Hyun, Ik-Hyun;Lee, Min-Gyu;Kam, Sang-Kyu
    • Journal of Environmental Science International
    • /
    • v.27 no.7
    • /
    • pp.561-575
    • /
    • 2018
  • Agricultural soils around springwaters heavily affected by pesticide run-off and around wells considering the regional characteristics were collected at 24 stations in Jeju Island, and the physicochemical properties and adsorption and leaching characteristics of four nonionic pesticides (diazinon, fenitrothion, alachlor, and metalaxyl) were investigated. The values of the major soil factors affecting the adsorption and leaching of pesticides, namely, soil pH($H_2O$), organic matter content, and cation exchange capacity (CEC), were in the range of 4.64 ~ 8.30, 0.9 ~ 13.1% and 12.7 ~ 31.7 meq/100 g, respectively. The Freundlich constant, $K_F$ value, which gives a measure of the adsorption capacity, decreased in the order of fenitrothion > diazinon > alachlor > metalaxyl, which was identical to their lower water solubility. Among the collected soils, the $K_F$ value was very highly correlated with organic matter content ($r^2=0.800{\sim}0.876$) and CEC ($r^2=0.715{\sim}0.825$) and showed a high correlation with clay content ($r^2=0.473{\sim}0.575$) and soil pH($H_2O$) ($r^2=0.401{\sim}0.452$). The leaching of pesticides in the soil column showed a reverse relationhip with their adsorption in soils, i.e., the pesticides leached more quickly for the soils with lower values of organic matter content and CEC among the soils and for the pesticides with higher water solubility.

A Kinetic Study on the Ammonia Nitrogen Adsorption by Physical Characteristics of Activated Carbon (활성탄 물성에 따른 암모니아성 질소 흡착의 동력학적 연구)

  • Seo, Jeong-beom;Kang, Joon-won;Lee, Ik-soo
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.3
    • /
    • pp.311-316
    • /
    • 2008
  • This study aimed to obtain equilibrium concentration on adsorption removal of ammonia nitrogen by activated carbon, to express the adsorption characteristics following Freundlich isotherm and also, based on the value obtained, to investigate the relationship between physical characteristics of activated carbon and dynamics of ammonia nitrogen removal by obtaining rate constant and effective pore diffusivity. The results summarized from this study are as follows. It was noted that powdered activated carbon showed better adsorption ability than granular activated carbon. The value of constant (f) of Freundlich isotherm of powered activated carbon was $4.6{\times}10^{-8}$ which is bigger than that of granular activated carbon. The adsorption rate constant on ammonia nitrogen of powered activated carbon with high porosity and low effective diameter was highest as 0.416 hr-1 and the effective pore diffusivity ($D_e$) was lowest as $1.17{\times}10^{-6}cm^2/hr$, and the value of ammonia nitrogen adsorption rate constant of granular activated carbon was $0.149{\sim}0.195hr^{-1}$. It was revealed that, with the same amount of dosage, the adsorptive power of activated carbon with lower effective diameter and bigger porosity was better and its rate constant was also high. With a little adsorbent dosage of 2 g, there was no difference removal ability of ammonia nitrogen as change of adsorption properties.

A Kinetic Study on the Phosphorus Adsorption by Physical Properties of Activated Carbon (활성탄 물성에 따른 인 흡착의 동력학적 연구)

  • Seo, Jeongbeom;Kang, Joonwon
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.3
    • /
    • pp.491-496
    • /
    • 2010
  • This study aimed to obtain equilibrium concentration on adsorption removal of phosphorus by activated carbon, to express the adsorption characteristics following Freundlich isotherm and also, based on the value obtained, to investigate the relationship between physical properties of activated carbon and dynamics of phosphorus removal by obtaining rate constant and effective pore diffusivity. The results summarized from this study are as follows. Phosphorus adsorption equilibrium reaching time of powdered activated carbon was reduced as the dosage of activated carbon increases, while granular activated carbon despite increased dosage did not have influence on adsorption equilibrium reaching times of phosphorus as well, taking more than 10 hours. It was also noted that powdered activated carbon showed better adsorption ability than granular activated carbon. The value of constant (f) of Freundlich isotherm of powered activated carbon on phosphorus was 4.26 which is bigger than those of granular activated carbon. The adsorption rate constant on phosphorus of powered activated carbon with low effective diameter and iodine number was highest as $8.888hr^{-1}$ and the effective pore diffusivity ($D_e$) was lowest as $2.45{\times}10^{-5}cm^2/hr$, and the value of phosphorus adsorption rate constant of granular activated carbon was $0.174{\sim}0.372hr^{-1}$, It was revealed that, with the same amount of dosage, the adsorptive power of activated carbon with lower effective diameter was better and its rate constant was also high.

Lead Adsorption onto a Domestic Ca-Bentonite (국산 칼슘-벤토나이트에 대한 납 흡착)

  • 고은옥;이재완;조원진;현재혁;강철형;전관식
    • Journal of Korea Soil Environment Society
    • /
    • v.5 no.1
    • /
    • pp.55-63
    • /
    • 2000
  • Bentonite has low hydraulic conductivity and high sorption capacity to limit hazardous heavy metals migration, and thus it has been considered as a liner material for the landfill of hazardous wastes. With a domestic bentonite sorption tests were carried out to investigate the adsorption isotherm and the effect of solution chemistry and temperature on adsorption. Freundlich isotherm was applied to fit the experimental data of lead adsorption, which fitted them well. Freundlich constants and correlation coefficient were calculated to be $K_{F}$\;=\;1.14$, n = 1.70, and $r^{2}\;=\;0.99$, respectively. The distribution coefficients($K_{d}$) for the adsorption of lead decreased with increasing initial lead concentration. The IL increased with increasing the pH of solution and sharply increased at pH > 7, which was attributed to the precipitation of lead species. The IL decreased with increasing the ion strength of solution. The $K_{d}$ gave a small increase with the concentration of ${SO_4}^{-2}$, whereas it had a nearly constant level with the concentration of ${HCO_3}^{-}$ in solution. An increase in the temperature of experimental solution increased the $K_{d}$.

  • PDF

Estimation of Phosphorus Adsorption Capacity of Alum-amended and Composted Paper Mill Sludge (제지슬러지에 대한 alum 처리 및 퇴비화에 따른 인 흡착능 변화)

  • Lee, In-Bog;Chang, Ki-Woon;Park, Jin-Myeon
    • Korean Journal of Environmental Agriculture
    • /
    • v.26 no.2
    • /
    • pp.124-130
    • /
    • 2007
  • Excess application of paper mill sludge (PMS) in field can limit phosphorus uptake by crops because aluminum presented in the sludge can fix or adsorb available phosphorus which is necessary for crop growth. To investigate phosphorus (P) adsorption characteristics of PMS, we examined P adsorption maximum $(X_m)$ using Langmuir isotherm and P adsorption energy constant $(K_f)$ using Freundlich isotherm for PMS without alum, PMS with alum, and composted PMS with alum through a laboratory incubation test. The maximum P adsorption capacities were 800 ${\mu}g\;g^{-1}$ in soil, 47 $mg\;g^{-1}$ in PMS without alum and 61 $mg\;g^{-1}$ in PMS with alum. P adsorption capacity with alum treatment for PMS increased by 30%. That of PMS compost was 68 $mg\;g^{-1}$ and showed that composting increases 11% of P adsorption. Freundlich constant $K_f$ was 22 in check soil, while $K_f$ values in PMS without alum and in PMS with alum were 398 and 426, respectively. After composting, $K_f$ value of PMS compost significantly increased as 1,819. In conclusions, p adsorption capacity for PMS were increased by alum treatment or composting and therefore excess or continuous land application of alum-amended or composted PMS can limit P uptake for crops by reducing available P in sell.

Development of Synthetic Zeolites from Scoria for Pesticides Removal in the Golf Course (송이로부터 골프장 농약 제거를 위한 합성 제올라이트의 개발)

  • 감상규;안병준;주창식;이민규
    • Journal of Environmental Science International
    • /
    • v.10 no.6
    • /
    • pp.451-459
    • /
    • 2001
  • Adsorption characteristics of triadimefon and diniconazole(pesticide) by natural zeolite($CLI_N$) and several synthetic zeolites were Investigated. The synthetic zeolites used En this study were as follows: Faujasite synthesized from coal fly ash($FAU_F$); Zeolite synthesized from the mixture of FAU and Na-Pl synthesized from the ratio of Cheju scoria 6 to coal fly ash 4 by weight($(FAU + Na-Pl)_{SF}$); waste fluid catalytic cracking catalyst($FCC_W$). The distribution coefficient, $K_D$ and Freundlich constant, $K_F$ decreased in the fellowing sequence : $FCC_W > FAU_F > (FAU + Na-Pl)_{SF} >CLI_N$ among the zeolites. The distribution coefficient and the adsorption capacity of $(FAU + Na-Pl)_{SF}$ for pesticides were 4.4 and 2.6 times higher for triamefon, and 2.0 and 2.4 times higher for diniconazole than those of $CLI_N$, respectively.

  • PDF

Phosphate Removal from Aqueous Solution by Aluminum (Hydr)oxide-coated Sand

  • Han, Yong-Un;Park, Seong-Jik;Park, Jeong-Ann;Choi, Nag-Choul;Kim, Song-Bae
    • Environmental Engineering Research
    • /
    • v.14 no.3
    • /
    • pp.164-169
    • /
    • 2009
  • A powder form of aluminum (hydr)oxides is not suitable in wastewater treatment/filtration systems because of low hydraulic conductivity and large sludge production. In this study, aluminum (hydr)oxide-coated sand (AOCS) was used to remove phosphate from aqueous solution. The properties of AOCS were analyzed using a scanning electron microscopy (SEM) combined with an energy dispersive X-ray spectrometer (EDS) and an X-ray diffractometer (XRD). Kinetic batch, equilibrium batch, and closed-loop column experiments were performed to examine the adsorption of phosphate to AOCS. The XRD pattern indicated that the powder form of aluminum (hydr)oxides coated on AOCS was similar to a low crystalline boehmite. Kinetic batch experiments demonstrated that P adsorption to AOCS reached equilibrium after 24 h of reaction time. The kinetic sorption data were described well by the pseudo second-order kinetic sorption model, which determined the amount of P adsorbed at equilibrium ($q_e$ = 0.118 mg/g) and the pseudo second-order velocity constant (k = 0.0036 g/mg/h) at initial P concentration of 25 mg/L. The equilibrium batch data were fitted well to the Freundlich isotherm model, which quantified the distribution coefficient ($K_F$ = 0.083 L/g), and the Freundlich constant (1/n = 0.339). The closed-loop column experiments showed that the phosphate removal percent decreased from 89.1 to 41.9% with increasing initial pH from 4.82 to 9.53. The adsorption capacity determined from the closed-loop experiment was 0.239 mg/g at initial pH 7.0, which is about two times greater than that ($q_e$ = 0.118 mg/g) from the kinetic batch experiment at the same condition.

Adsorption Characteristics of Pesticides in Zeolites

  • Chang-Han Lee;Kil-Seong Kim;Sang-Kyu Kam
    • Journal of Environmental Science International
    • /
    • v.31 no.12
    • /
    • pp.1103-1115
    • /
    • 2022
  • The adsorption characteristics of four pesticides (phosphamidon, fenitrothion, triadimefon, and diniconazole) on natural clinoptilolite (CLIN) and three synthetic zeolites were investigated. The synthetic zeolites included faujasite (FAUF) synthesized from coal fly ash; the mixture of FAU and Na-P1 (FAU + Na-P1)SF synthesized using Jeju scoria and coal fly ash at the ratio of 1.5 by weight; and waste fluid catalytic cracking catalyst (FCCW). The distribution coefficient, KD and the Freundlich constant, KF decreased in the following sequence: FCCW > FAUF > (FAU + Na-P1)SF > CLIN among the zeolites and diniconazole>fenitrothion> triadimefon> phosphamidon among the pesticides. The pesticide adsorptivity increased with increasing temperature for FAUF, (FAU+Na-P1)SF and FCCW, however, it decreased for CLIN, regardless of the type of pesticide. The adsorptivity of pesticides was independent of pH for phosphamidon, fenitrothion and triadimefon, whereas it decreased with increasing pH for diniconazole, regardless of zeolite type.