• Title/Summary/Keyword: Freundlich adsorption isotherm

Search Result 379, Processing Time 0.03 seconds

Fabrication of Chitosan Nanoparticles with Lactococcus lactis for the Removal of Phthalate Endocrine Hormone (Phthalate계 환경호르몬 제거를 위한 Lactococcus lactis를 함유한 Chitosan Nanoparticles의 제조)

  • Yoon, Hee-Soo;Kang, Ik-Joong
    • Korean Chemical Engineering Research
    • /
    • v.59 no.1
    • /
    • pp.21-34
    • /
    • 2021
  • Chitosan nanoparticles (CNPs) and Lactococcus lactis (L. lac.) were used as adsorbents to evaluate the adsorption performance of endocrine hormones, which are phthalates, in the healthy food packages. CNPs were produced through the cross bond with tripolyphosphate (TPP), and L. lac.-CNPs were prepared through the introduction of L. lac. during the preparation. The various functional groups of all adsorbents were identified using Fourier transform infrared spectroscopy (FTIR). Adsorption isotherm and adsorption kinetic confirmed the adsorption behavior and mechanism of CNPs, L. lac. and L. lac.-CNPs. The adsorption behavior of DBP and DEP for all particles was more suitable for the Freundlich adsorption isotherm model than for the Langmuir adsorption isotherm model, which means that the surface of the particles is heterogeneous. The adsorption mechanism was more suitable for the Pseudo-2nd-order model than for the Pseudo-1st-order model. This means that due to the presence of various functional groups on the particle surface, the adsorption of DBP and DEP is dominated by chemical adsorption such as electrostatic attraction and hydrogen bonding rather than physical adsorption. Finally, it was confirmed that the preparation of CNPs and L. lac.-CNPs can be performed easily and quickly, and it could be used as a cheaper adsorbent that can effectively remove phthalates.

Experiment on Chloride Adsorption by Calcium Aluminate Phases in Cement (시멘트내 칼슘 알루미네이트 상에 의한 염소이온의 흡착반응 연구)

  • Yoon, In-Seok
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.4
    • /
    • pp.389-397
    • /
    • 2017
  • Friedel's salt is an important product of chemical adsorption between cement hydrate and chloride ions because it contains chlorine in its structure. When cement reacts with water in the presence of chloride ions, the $C_3A$ phase, and $C_4AF$ phase react with chloride to produce Friedel's salt. If chloride ions penetrate into concrete from external environments, many calcium aluminate hydrates, including AFm, can bind chloride ions. It is very important, therefore, to investigate the chloride binding isotherm of $C_3A$ phase, $C_4AF$ phase, and AFm phase to gain a better understanding of chloride binding in cementitious materials. Meanwhile, the adsorption isotherm can provide us with the fundamental information for the understanding of adsorption process. The experimental results of the isotherm can supply not only the quantitative knowledge of the cement-Friedel's salt system, but also the mechanism of adsorption and the properties of their interactions. The purpose of this study is to explore the time dependant behaviors of chloride ions adsorption with $C_3A$, $C_4AF$ and AFm phases. The chloride adsorption isotherm was depicted with Langmuir isotherm and the adsorption capacity was low in terms of the stoichiometric point of view. However, the chloride adsorption of AFm phase was depicted with Freundlich isotherm and the value was very low. Since the amount of the adsorption was governed by temperature, the affecting parameters of isotherm were expressed as a function of temperature.

Adsorption characteristics of $SO_2$ on Vermi Cast (지렁이 분변토의 $SO_2$ 가스 흡착특성)

  • 김춘희;고경숙;안철우
    • Journal of Environmental Science International
    • /
    • v.9 no.2
    • /
    • pp.145-149
    • /
    • 2000
  • The purpose of this study was to determine whether Vermi Cast could be used effectively to remove $SO_2$ from flue gas, and then to investigate optimum adsorption conditions. The Vermi Cast used as adsorbent was mechanically screened with 8~20 mesh sieve. The adsorption data for $SO_2$ were regressed using the Freundlich isotherm. The fit was generally satisfactory ($R^2$=0.945~0.982). With the temperature changes from 2$0^{\circ}C$ to 4$0^{\circ}C$, the constant k in Freundlich isotherm qe= $kCe^{1/n}$, decreased from 1.409 at 2$0^{\circ}C$to 0.297 at 4$0^{\circ}C$, and the exponent 1/n were decreased from 0.343 to 0.134. With the bed depth changes from 10cm to 30cm, the adsorption capacity expressed as mmol of $SO_2$ adsorbed per g of Vermi Cast increased from 0.247 to 0.381. Moisture content is an important parameter in the $SO_2$ adsorbed were observed over 0.3mmol $SO_2$ /g Vermi Cast. The best adsorption capacity was 0.487mmol $SO_2$ /g Vermi Cast, and it was obtained with moisture content 37%, temperature 2$0^{\circ}C$. From the above results, ti might be concluded that Vermi Cast is effectively as a good adsorbent to remove $SO_2$ from flue gas.

  • PDF

Adsorption Characterization of Cd by Activated Carbon containing Hydroxyapatite using Response Surface Methodology (RSM) (반응표면분석법을 이용한 Hydroxyapatite 첨가 활성탄에서의 Cd 흡착특성에 관한 연구)

  • An, Sang-Woo;Yoo, Ji-Young;Choi, Jae-Young;Park, Jae-Woo
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.6
    • /
    • pp.943-950
    • /
    • 2009
  • Cadmium (Cd) adsorption onto the activated carbon containing hydroxyapatite (HAP) was investigated in batch experiments and response surface methodology (RSM) using the Box-Behnken methods were applied to the experimental results. Cd adsorption with different HAP mass ratio of from 10% to 30%. With more HAP, Cd was more adsorbed. These results suggest that the higher HAP mass causes an increase of the ion exchange potential of the HAP sorbent. Equilibrium experimental results from Cd adsorption was fitted to Langmuir and Freundlich isotherm models. Cd adsorption on HAP sorbent were found to follow the Freundlich isotherm model well in the initial adsorbate concentration range. Also, Cd adsorption was a function of the HAP mass ratio ($x_1$), initial Cd concentration ($x_2$), and initial pH ($x_3$) from the application of the RSM. Statistical results showed the order of significance of the independent variables to be initial Cd concentration > HAP mass ratio > initial pH.

Isothermal and Kinetic Studies of the Adsorption Removal of Pb(II), Cu(II), and Ni(II) Ions from Aqueous Solutions using Modified Chara Sp. Algae

  • Kalash, Khairi R.;Alalwan, Hayder A.;Al-Furaiji, Mustafa H.;Alminshid, Alaa. H.;Waisi, Basma I.
    • Korean Chemical Engineering Research
    • /
    • v.58 no.2
    • /
    • pp.301-306
    • /
    • 2020
  • We investigated the individual biosorption removal of lead, copper, and nickel ions from aqueous solutions using Chara sp. algae powder in a batch mode. The impact of several parameters, such as initial concentration of the metal ions, contacting time, sorbent dose, and pH on the removal efficiency, was investigated. The maximum removal efficiency at optimum conditions was found to be 98% for Pb(II) at pH = 4, 90% for Cu(II) at pH = 5, and 80% for Ni(II) at pH = 5. The isotherm study was done under the optimum conditions for each metal by applying the experimental results onto the well-known Freundlich and Langmuir models. The results show that the Langmuir is better in describing the isotherm adsorption of Pb(II) and Ni(II), while the Freundlich is a better fit in the case of Cu(II). Similarly, a kinetic study was performed by using the pseudo-first and second-order equations. Our results show that the pseudo-second-order is better in representing the kinetic adsorption of the three metal ions.

Study on Process Parameter of Ethyl Violet by Activated Carbon Adsorption (활성탄 흡착에 의한 Ethyl Violet의 공정 파라미터 연구)

  • Lee, Jong-Jib
    • Journal of Korean Society of Water Science and Technology
    • /
    • v.26 no.6
    • /
    • pp.143-152
    • /
    • 2018
  • The process parameters of ethyl violet from aqueous solution by activated carbon adsorption were carried out as a function of pH, temperature, contact time, initial concentration and temperature. The adsorption equilibrium data can be described well by the Langmuir and Freundlich isotherm models. Base on Langmuir constant ($R_L=0.0343{\sim}0.0523$) and Freundlich constant (1/n=0.1633~0.1974), This process could be employed as effective treatment for adsorption of ethyl violet. The kinetic experimental results showed that the adsorption process can be well described with the pseudo second order model. Based on the positive enthalpy (6.505 kJ/mol), the adsorption of ethyl violet onto granular activated carbon is endothermic. The negative Gibbs free energy (-1.169~-1.681 kJ/mol) obtained indicates that the adsorption process is spontaneous and physisorption.

Simple and Efficient Synthesis of Iron Oxide-Coated Silica Gel Adsorbents for Arsenic Removal: Adsorption Isotherms and Kinetic Study

  • Arifin, Eric;Cha, Jinmyung;Lee, Jin-Kyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.8
    • /
    • pp.2358-2366
    • /
    • 2013
  • Iron oxide (ferrihydrite, hematite, and magnetite) coated silica gels were prepared using a low-cost, easily-scalable and straightforward method as the adsorbent material for arsenic removal application. Adsorption of the anionic form of arsenic oxyacids, arsenite ($AsO^{2-}$) and arsenate ($AsO{_4}^{3-}$), onto hematite coated silica gel was fitted against non-linear 3-parameter-model Sips isotherm and 2-parameter-model Langmuir and Freundlich isotherm. Adsorption kinetics of arsenic could be well described by pseudo-second-order kinetic model and value of adsorption energy derived from non-linear Dubinin-Radushkevich isotherm suggests chemical adsorption. Although arsenic adsorption process was not affected by the presence of sulfate, chloride, and nitrate anions, as expected, bicarbonate and silicate gave moderate negative effects while the presence of phosphate anions significantly inhibited adsorption process of both arsenite and arsenate. When the actual efficiency to remove arsenic was tested against 1 L of artificial arsenic-contaminated groundwater (0.6 mg/L) in the presence competing anions, the reasonable amount (20 g) of hematite coated silica gel could reduce arsenic concentration to below the WHO permissible safety limit of drinking water of $10{\mu}g/L$ without adjusting pH and temperature, which would be highly advantageous for practical field application.

Study on Adsorption of Pb and Cd in Water Using Carbonized Water Treatment Sludge (탄화 정수 슬러지를 이용한 수중의 납과 카드뮴 흡착에 관한 연구)

  • Kim, Younjung;Kim, Daeik;Choi, Jong-Ha;Hong, Yong Pyo;Ryoo, Keon Sang
    • Journal of the Korean Chemical Society
    • /
    • v.61 no.5
    • /
    • pp.238-243
    • /
    • 2017
  • In this study, water treatment sludge carbonized with $400^{\circ}C$ was tested as an adsorbent for the removal of Pb and Cd in water. The carbonized sludge was characterized by thermo-gravimetric analysis (TGA), scanning electron microscopy (SEM), X-ray fluorescence spectrometry (XRF), and surface area analysis. Carbonized sludge exhibited much higher specific surface area and total pore volume than water treatment sludge itself. In batch-type adsorption process, carbonized sludge represented better adsorption performance for Pb than Cd, achieving 90~98% at the concentrations conducted in the experiments. Equilibrium data of adsorption were analyzed using the Freundlich and Langmuir isotherm models. It was seen that both Freundlich and Langmuir isotherms have correlation coefficient $R^2$ value larger than 0.95. The results of studies indicated that carbonized water treatment sludge by heat treatment could be used as an efficient adsorbent for the removal of Pb and Cd from water.

Adsorptive Characteristics of Benzene and Toluene on Activated Carbon (활성탄상에서 벤젠과 톨루엔의 흡착특성)

  • Park, Byung-Bae;Kim, Do-Su;Kim, Han-Su;Park, Yeong-Seong
    • Clean Technology
    • /
    • v.7 no.2
    • /
    • pp.141-149
    • /
    • 2001
  • The effects of various factors such as adsorption temperature, interstitial velocity, species and concentration of adsorbates(benzene and toluene) and aspect ratio(L/D) on adsorption characteristics were investigated in a fixed bed with activated carbon. The breakthrough time in a fixed bed was decreased with the increasing of adsorption temperature, interstitial velocity and concentration of adsorbates. The interstitial velocity, concentration of adsorbates and adsorption temperature had influenced considerably upon the MTZ(mass transfer zone) and LUB(length of unused bed) obtained through the breakthrough curves, while aspect ratio(L/D) had smaller effect than former factors. Especially, the concentration of adsorbates among factors have the largest effect on MTZ and LUB. From comparison with the model isotherms, such as the Langmuir, Freundlich and Langmuir-Freundlich, the experimental isotherm data of benzene and toluene agreed farily well to three adsorption isotherm models.

  • PDF

Adsorption Kinetic and Isotherm Characteristics of Mn Ions with Zeolitic Materials Synthesized from Industrial Solid Waste (산업폐기물로부터 합성된 제올라이트 물질의 망간 이온 흡착속도 및 등온흡착 특성)

  • Choi, Jeong-Hak;Lee, Chang-Han
    • Journal of Environmental Science International
    • /
    • v.29 no.8
    • /
    • pp.827-835
    • /
    • 2020
  • Zeolite material having XRD peaks of Na-A zeolite in the 2θ range of 7.18 to 34.18 can be synthesized from the waste catalyst using a fusion/hydrothermal method. The adsorption rate of Mn ions by a commercial Na-A zeolite and the synthesized zeolitic material increased as the adsorption temperature increased in the range of 10 ~ 40℃. The adsorption of Mn ion were very rapid in the first 30 min and then reached to the equilibrium state after approximately 60 min. The adsorption kinetics of Mn ions by the commercial Na-A zeolite and the zeolitic material were found to be well fitted to the pseudo-2nd order kinetic model. Equilibrium data by the commercial Na-A zeolite and the zeolitic material fit the Langmuir, Koble-Corrigan, and Redlich-Peterson isotherm models well rather than Freundlich isotherm model. The removal capacity of the Mn ions by the commercial Na-A zeolite and the zeolitic material obtained from the Langmuir model was 135.2 mg/g and 128.9 mg/g at 30℃, respectively. The adsorption capacity of Mn ions by the synthesized zeolitic material was almost similar to that of commercial Na-A zeolite. The synthesized zeolitic material could be applied as an economically feasible commercial adsorbent.