• Title/Summary/Keyword: Freundlich 흡착 모델

Search Result 106, Processing Time 0.032 seconds

Mathematical Modelling of Phenol Desorption from Spent Activated Carbon by Acetone (활성탄에 흡착된 페놀의 아세톤 탈착 모델에 대한 연구)

  • Kim, Seungdo;Oh, Young-Jin
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.12
    • /
    • pp.2115-2123
    • /
    • 2000
  • This research was designed to investigate the mathematical model and kinetics of phenol desorption from spent activated carbon. elucidating the desorption characteristics of phenol in the case of using acetone. The Freundlich isotherm constant ($k_e$) is expressed as a function of temperature: $k_e(T)=0.1exp(797.297/T)$. The Freundlich isotherm constant(n) is a weak temperature function and is rarely affected by temperature below $50^{\circ}C$. whereas it is necessary to correct the n value with respect to temperature above $100^{\circ}C$ owing to significant deviation (~5%). Based on the assumption that the surface desorption reaction of phenol is rate limiting, the desorption model was developed. Desorption reaction constant($k_d$) was determined by means of fitting the theoretical results best to experimental ones. The Arrhenius relationships for $k_d$ was expressed by: $k_d(sec^{-1})=0.0479{\cdot}exp(-3037/T)$. The model was verified by comparing the experimental ones under different reaction conditions with the theoretical results determined by the previously estimated $k_d$. Since the difference between them is with 5%, it is expected that the desorption model of this research seems to be appropriate to explain the desorption of phenol from activated carbon by acetone. According to studies of the model. regeneration time and ratio was estimated as a function of temperature under present conditions as follows: (1) regeneration time : ${\tau}_{reg}(hr)=-0.08130T_c+8.4775$. (2) regeneration ratio : ${\eta}(%)=0.2210T_c+83.745$. The regeneration time at 15, 55, and $100^{\circ}C$. respectively. was 7, 4.2, and 0.35 hours, whereas the regeneration ratio was 87. 96. and 99%. respectively. Also. studies of the model would make it possible to determine the regeneration time and ratio under other specific conditions (temperature, applied acetone volume, amount of activated carbon, and initially adsorbed phenol amount).

  • PDF

Biosorption of Cadmium by a Methanotrophs Exopolysaccharide (메탄산화세균의 EPS를 이용한 Cd의 생물흡착)

  • Lee, Hee-Ja;Kim, Kwang-Soo;Cho, Yang-Seok
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.1415-1419
    • /
    • 2006
  • 메탄을 탄소원 및 에너지원으로 이용하는 메탄산화균은 물질대사과정 중에 다량의 세포외 고분자물질인 Extracellular polymeric substances(EPS)를 생성하는데, EPS는 카르복실기와 같은 표면흡착 기능을 가지고 있어 생체흡착제로 사용이 가능하다. 따라서 본 연구에서는 메탄산화세균을 이용하여 중금속인 Cd의 흡착성능을 파악하여 활성슬러지의 흡착능과 비교하고, EPS 농도별, pH별 흡착량의 변화를 실험한 후 Freundlich 흡착모델식에 적용하여 흡착공정의 기본적인 설계인자를 도출하고자 하였다. 실험에 사용한 메탄산화세균은 매립지 복토층 상부 토양에서 분리하여 실험실에서 대량으로 배양하였으며, EPS 생성을 위해 메탄을 Head space의 20%를 주입하고 $30^{\circ}C$, 150rpm에서 질소원이 부족한 조건으로 48hr 동안 배양하였다. Cd의 흡착실험은 용액의 pH를 3에서 8까지 변화를 주면서 활성슬러지와 메탄산화세균의 시간별 흡착능을 측정하였다. 또한 중금속의 농도별 흡착능을 측정하여 흡착평형 상수를 파악하였으며, 중금속 흡착 전, 후 미생물의 SEM 촬영, FT-IR 분석, 전자현미분석(EPMA)을 통하여 무기성분 분석 및 표면관찰을 수행하였다. 실험결과 메탄산화세균에 의해 생성된 EPS 물질은 중금속에 대한 강한 결합능력이 있으며, Cd에 대한 최고 흡착능은 26mg Cd(Ⅱ)/g VSS의 값을 보였다. 이러한 미생물의 EPS의 흡착능은 pH와 칼슘이온의 영향을 많이 받았으며, 메탄산화세균의 FT-IR 분석결과 EPS에는 sulfate ester, pyruvate 등과 같은 작용기와 amino sugar, carboxyl 작용기들이 많이 존재하여 활성슬러지에 비해 중금속의 흡착능이 높은 것으로 사료되었다.X>${\mu}_{max,A}$는 최대암모니아 섭취률을 이용하여 구한 결과 $0.65d^{-1}$로 나타났다.EX>$60%{\sim}87%$가 수심 10m 이내에 분포하였고, 녹조강과 남조강이 우점하는 하절기에는 5m 이내에 주로 분포하였다. 취수탑 지점의 수심이 연중 $25{\sim}35m$를 유지하는 H호의 경우 간헐식 폭기장치를 가동하는 기간은 물론 그 외 기간에도 취수구의 심도를 표층 10m 이하로 유지 할 경우 전체 조류 유입량을 60% 이상 저감할 수 있을 것으로 조사되었다.심볼 및 색채 디자인 등의 작업이 수반되어야 하며, 이들을 고려한 인터넷용 GIS기본도를 신규 제작한다. 상습침수지구와 관련된 각종 GIS데이타와 각 기관이 보유하고 있는 공공정보 가운데 공간정보와 연계되어야 하는 자료를 인터넷 GIS를 이용하여 효율적으로 관리하기 위해서는 단계별 구축전략이 필요하다. 따라서 본 논문에서는 인터넷 GIS를 이용하여 상습침수구역관련 정보를 검색, 처리 및 분석할 수 있는 상습침수 구역 종합정보화 시스템을 구축토록 하였다.N, 항목에서 보 상류가 높게 나타났으나, 철거되지 않은 검전보나 안양대교보에 비해 그 차이가 크지 않은 것으로 나타났다.의 기상변화가 자발성 기흉 발생에 영향을 미친다고 추론할 수 있었다. 향후 본 연구에서 추론된 기상변화와 기흉 발생과의 인과관계를 확인하고 좀 더 구체화하기 위한 연구가 필요할 것이다.게 이루어질 수 있을 것으로 기대된다.는 초과수익률이 상승하지만, 이후로는 감소하므로, 반전거래전략을 활용하는 경우 주식투자기간은 24개월이하의 중단기가 적합함을 발견하였다. 이상의 행태적 측면과 투자성과측면의 실증결과를 통하여 한국주식시장에 있어서 시장수익률을 평균적으로 초과할 수 있는 거래전

  • PDF

Adsorption Characteristics of Cadmium ions from Aqueous Solution using by-product of Brewing (주정오니를 활용한 수중의 카드뮴(Cd) 흡착 특성)

  • Kim, Min-Su;Ham, Kwang-Joon;Ok, Yong-Sik;Gang, Seon-Hong
    • Korean Journal of Environmental Agriculture
    • /
    • v.29 no.2
    • /
    • pp.152-158
    • /
    • 2010
  • Biosorption is considered to be an alternative method to replace the present adsorbent systems for the treatment of metal contaminated wastewater. In this study, by-product which was abandoned from brewing factory was used to remove metal component in aqueous solution. The experimental results showed that the range of the removal efficiency is 60~91% and adsorption equilibrium was reached in about 3 hr. FT-IR and stereo microscope has been used to observe the surface conditions and changes in functional groups by calcination. At the end of elution, the amount of nitrogen and phosphorus in water was increased 11 and 7 times compare raw sample to calcinated samples. The Langmuir isotherm adequately described the adsorption of waste materials and the maximum adsorption capacity was 28.17 mg/g for Cd. The overall results suggested that waste material might can be used for biosorption of Cd.

Analysis of an Immobilized β-Galactosidase Reactor with Competitive Product Inhibition Kinetics (경쟁적 저해를 갖는 고정화 β-galactosidase 반응기의 해석)

  • Kang, Byung Chul
    • Journal of Life Science
    • /
    • v.23 no.12
    • /
    • pp.1471-1476
    • /
    • 2013
  • The present study deals with the immobilization of Kluyveromyces lactis ${\beta}$-galactosidase on a weak ionic exchange resin (Duolite A568) as polymer support. ${\beta}$-Galactosidase was immobilized using the adsorption method. A kinetic study of the immobilized enzyme was performed in a packed-bed reactor. The adsorption of the enzyme followed a typical Freundlich adsorption isotherm. The adsorption parameters of k and n were 14.6 and 1.74, respectively. The initial rates method was used to characterize the kinetic parameters of the free and immobilized enzymes. The Michaelis-Menten constant ($K_m$) for the immobilized enzyme (120 mM) was higher than it was for the free enzyme (79 mM). The effect of competitive inhibition kinetics was studied by changing the concentration of galactose in a recycling packed-bed reactor. The kinetic model with competitive inhibition by galactose was best fitted to the experimental results with $V_m$, $K_m$, and $K_I$ values of 46.3 $mmolmin^{-1}mg^{-1}$, 120 mM, and 24.4 mM, respectively. In a continuous packed-bed reactor, increasing the flow rate of the lactose solution decreased the conversion efficiency of lactose at different input lactose concentrations. Continuous operation of 11 days was conducted to investigate the stability of a long-term operation. The retained activity of the immobilized enzymes was 63% and the half-life of the immobilized enzyme was found to be 15 days.

Sargassum confusum for Biosorption of Pb and Cr (알송이 모자반, Sargassum confusum을 이용한 Pb 및 Cr의 생물학적 흡착 및 탈착)

  • SUH Kuen-Hack;ANN Kab-Hwan;CHO Moon-Chul;CHO Jin-Koo;JIN Hyung-Joo;HONG Yong-Ki
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.34 no.1
    • /
    • pp.1-6
    • /
    • 2001
  • Biosorption of Pb and Cr by Sargassum confusum was evaluatet at in the various conditions. The uptake capacities for Pb and Cr were 197.5 mg Pb/g biomass and 133.1 mg Cr/g biomass, respectively. The adsorption parameters for Pb and Cr were determined according to the Langmuir and Freundlich model. Biosorption of Pb and Cr was increased with the increase of pH value. Pb and Cr adsorbed by S. confusum could be recovered by desorption process with 0.1 M HCl, 0.1 M $HNO_3$ and 0.1 M EDTA. The ratio of Pb desorption was above $93\%$, whereas the ratio of Cr desorption was below $30\%$.

  • PDF

Separation of Vanadium and Tungsten from Simulated Leach Solutions using Anion Exchange Resins (음이온교환 수지를 이용한 바나듐/텅스텐 혼합용액으로부터 바나듐/텅스텐 분리회수에 관한 연구)

  • Jong Hyuk Jeon;Hong In Kim;Jin Young Lee;Rajesh Kumar Jyothi
    • Resources Recycling
    • /
    • v.31 no.6
    • /
    • pp.25-35
    • /
    • 2022
  • The adsorption/desorption behavior and separation conditions of vanadium and tungsten ions were investigated using a gel-type anion-exchange resin. In the adsorption experiment with the initial acidity of the solution, the adsorption rate of vanadium was remarkably low in strong acids and bases. Additionally, the adsorption rate of tungsten was low in a strong base. An increase in the reaction temperature increased the adsorption reaction rate and maximum adsorption. The effect of tungsten on the maximum adsorption was minimal. The adsorption isotherms of vanadium and tungsten on the ion-exchange resin were suitable for the Langmuir adsorption isotherms of both the ions. For tungsten, the adsorption isotherms of vanadium and tungsten were polyoxometalate. Both ion-exchange resins were simulated using similar quadratic reaction rate models. Vanadium was desorbed in the aqueous solutions of HCl or NaOH, the desorption characteristics of vanadium and tungsten depended on the desorption solution, and tungsten was desorbed in the aqueous solution of NaOH. It was possible to separate the two ions using the desorption process. The desorption reaction reached equilibrium within 30 min, and more than 90% recovery was possible.

A Study on the Correlations between Molecular Structures of Soil Humins and Sorption Properties of Phenanthrene (토양 휴민(Humin)의 분자구조 특성과 Phenanthrene 흡착상수와의 상관관계에 대한 연구)

  • Lee, Doo-Hee;Eom, Won-Suk;Shin, Hyun-Sang
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.12
    • /
    • pp.897-905
    • /
    • 2013
  • In this study, sorption coefficients (${\log}K_{OC}$, n) for the binding of phenanthrene (PHE) to soil humins, insoluble fraction of soil humc substances (HS), were determined and relationship between the sorption coefficients and structural characteristics of the soil humins were investigated. The soil humins used in the present study were isolated from 7 different soils including 5 domestic soils, an IHSS standard and a peat soil, and characterized by elemental analysis and CPMAS $^{13}C$ NMR method. $^{13}C$ NMR spectral features indicate that the soil humins are mainly made up of aliphatic carbons (57.1~72.3% in total carbon) with high alkyl-C moiety, and the alkyl-C contents ($C_{Al-H,C}$, %) was in order of granite soil Hu (26~42%) > volcanic ash soil, HL Hu (23.9%) > Peat Hu (14.0%). The results of correlation study show that a positive relationship ($r^2$ = 0.77, p < 0.05) between organic carbon normalized-sorption coefficients ($K_{OC}$, mL/g) and alkyl-C contents($C_{Al-H,C}$, %), while negative relationship ($r^2$ = (-)0.74, p < 0.05) between Freundlich sorption parameter (n) and H,C-substituted aromatic carbon contents ($C_{Ar-H,C}$, %). The magnitude of $K_{OC}$ values are also negatively well correlated with polarity index (e.g., PI, N + O)/C) ($r^2$ = (-)0.74, p < 0.1). These results suggest that the binding capacity (e.g., $K_{OC}$) for PHE is increased in soil humin molecules having high contents of alkyl-C or lower polarity, and nonlinear sorption for PHE increased as the H,C-substituted aromatic carbon contents ($C_{Ar-H,C}$, %) in the soil humins increased. The PHE sorption characteristics on soil humins are discussed based on the dual reactive mode of sorption model.

Enhancement of Manganese Removal Ability from Water Phase Using Biochar of Prinus densiflora Bark (소나무 수피 바이오차를 이용한 수중에서 망간의 제거능력 향상)

  • Kim, Min-Ji;Choi, Jung Hoon;Choi, Tae Ryeong;Choi, Suk Soon;Ha, Jeong Hyub;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.31 no.5
    • /
    • pp.526-531
    • /
    • 2020
  • Manganese ions contained in water phase are acting as a toxic substance in the human body and also known to affect the nervous system. In particular, effective treatment technology is required since manganese removal is difficult due to its high solubility in a wide pH range. In this study, Prinus densiflora bark was chemically modified with hydrogen peroxide, and the modified adsorbent was used for removing manganese ions in an aqueous solution. The modified adsorbent showed high removal capacity of 82.1 and 56.2%, respectively, at conditions of 5 and 10 mg/L manganese ions. Also, the adsorption isotherm from the data was applied to the theoretical equation. As a result, the adsorption behavior of manganese ions was better suited to the Langmuir than Freundlich model, and it was also found from kinematics that the pseudo-second order kinetic model was more suitable. In addition, the changes of Gibbs free energy indicated that the adsorption reaction became more spontaneously with increasing temperature. Consequently, these experimental results may be used as a water treatment technology which can efficiently treat manganese ions contained in water.

Characteristics of Heat Stable Salts Treatment Using Anion Exchange Resins in CO2 Absorption Process (음이온교환수지를 이용한 CO2 흡수 공정시 발생하는 열안정성염 처리 특성)

  • Park, Kyung-Bin;Cho, Jun-Hyoung;Jeon, Soo-Bin;Lim, You-Young;OH, Kwang-Joong
    • Clean Technology
    • /
    • v.21 no.1
    • /
    • pp.22-32
    • /
    • 2015
  • In this study, we studied the characteristics of ion exchange for treatment of HSS (heat stable salts) which cause performance reduction in CO2 gas capture amine solution using anion exchange resins. The optimum HSS removal efficiency, 96.1% was obtained when using strong base anion exchange resin SAR10 at dosage 0.05 g/mL, 316 K, pH 12 and the best resin regeneration efficiency, 78.8% was obtained using NaOH solution of 3 M at 316 K. The adsorption data were described well by the Freundlich model and the sorption intensity(n) was 2.0951 lying within the range of favorable adsorption. The adsorption selectivity coefficients were increased by increasing valences and size of ion and desorption selectivity coefficients showed a contradictory tendency to adsorption selectivity coefficients. By continuous HSS removal experiments, 13.3 BV of HSS contaminated solution was effectively treated and the optimum NaOH solution consumption was 5.2 BV to regenerate resins.

Characteristics of By-product Ochre from Acid Mine Drainage (AMD) Treatment and Its Potential Use (산성광산배수 (AMD) 처리 부산물 ochre의 특성과 활용)

  • Jeong, Jung-Hwan;Kim, Ho-Jin;Kim, Young-Nam;Nam, Kwang-Soo;Kim, Kye-Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.3
    • /
    • pp.304-314
    • /
    • 2010
  • This study was carried out to find out potential use of ochre as an agent to reduce phosphorus content in water. Ochre is a by-product from treatment of acid mine drainage (AMD) which is composed mostly of $Fe_2O_3$, $Fe_2O_3{\cdot}H_2O$, $FeO{\cdot}OH$ and $Fe(OH)_3$. Three ochre samples (ochre-H, ochre-D and ochre-S) were collected from three treatment facilities in Gangwon province. Physico-chemical characteristics of three ochre samples including pH, electrical conductivity, total phosphorus, available phosphorus, particle size distribution were analyzed. Scanning electron microscopy (SEM) energy dispersive spectroscopy (EDS), X-ray diffraction (XRD) and X-ray fluorescence (XRF) analysis were also carried out. In addition, experiments for phosphorus removal from water was performed. Calcium content of ochre-H was higher than that of ochre-D and ochre-S, whereas iron content of ochre-H was lower than that of ochre-D and ochre-S. All the phosphorus in water up to maximum 191,411 mg $kg^{-1}$ per unit mass of ochre was removed with ochre-H. Ochre has immense potential as an agent to reduce phosphorus content in water.