• Title/Summary/Keyword: Freundlich 등온흡착식

Search Result 177, Processing Time 0.022 seconds

Characteristics of Equilibrium, Kinetics, and Thermodynamics for Adsorption of Acid Black 1 Dye by Coal-based Activated Carbon (석탄계 활성탄에 의한 Acid Black 1 염료의 흡착에 있어서 평형, 동력학, 및 열역학적 특성)

  • Lee, Jong-Jib
    • Clean Technology
    • /
    • v.27 no.3
    • /
    • pp.261-268
    • /
    • 2021
  • Equilibrium, kinetics, and thermodynamics of adsorption of acid black 1 (AB1) by coal-based granular activated carbon (CGAC) were investigated with the adsorption variables of initial concentration of dye, contact time, temperature, and pH. The adsorption reaction of AB1 by activated carbon was caused by electrostatic attraction between the surface (H+) of activated carbon and the sulfite ions (SO3-) and nitrite ions (NO2-) possessed by AB1, and the degree of reaction was highest at pH 3 (97.7%). The isothermal data of AB1 were best fitted with Freundlich isotherm model. From the calculated separation factor (1/n) of Freundlich, it was confirmed that adsorption of AB1 by activated carbon could be very effective. The heat of adsorption in the Temkin model suggested a physical adsorption process (< 20 J mol-1). The kinetic experiment favored the pseudo second order model, and the equilibrium adsorption amount estimated from the model agreed to that given by the experiments (error < 9.73% ). Intraparticle diffusion was a rate controlling step in this adsorption process. From the activation energy and enthalpy change, it was confirmed that the adsorption reaction is an endothermic reaction proceeding with physical adsorption. The entropy change was positive because of an active reaction at the solid-liquid interface during adsorption of AB1 on the activated carbon surface. The free energy change indicated that the spontaneity of the adsorption reaction increased as the temperature increased.

Adsorption Equilibrium, Kinetics and Thermodynamics Studies of Malachite Green Using Zeolite (제올라이트를 이용한 말라카이트 그린의 흡착평형, 동력학 및 열역학 연구)

  • Lee, Jong-Jib
    • Clean Technology
    • /
    • v.18 no.1
    • /
    • pp.76-82
    • /
    • 2012
  • The paper includes utlization of zeolite as potential adsorbent to remove a hazardous malachite green from waste water. The adsorption studies were carried out at 298, 308 and 318 K and effects of temperature, contact time, initial concentration on the adsorption were measured. On the basis of adsorption data Langmuir and Freundlich adsorption isotherm model were also confirmed. The equilibrium process was described well by Freundlich isotherm model, showing a selective adsorption by irregular energy of zeolite surface. From determined isotherm constants, zeolite could be employed as effective treatment for removal of malachite green. From kinetic experiments, the adsorption process followed the pseudo second order model, and the adsorption rate constant ($k_2$) decreased with increasing initial concentration of malachite green. Thermodynamic parameters like activation energy, change of free energy, enthalpy, and entropy were also calculated to predict the nature adsorption. The activation energy calculated from Arrhenius equation indicated that the adsorption of malachite green on the zeolite was physical process. The negative free energy change (${\Delta}G^{\circ}$ =-6.47~-9.07 kJ/mol) and the positive enthalpy change (${\Delta}H^{\circ}$ = +32.414 kJ/mol) indicated the spontaneous and endothermic nature of the adsorption in the temperature range 298~318 K.

Sorption of Dissolved Inorganic Phosphorus to Zero Valent Iron and Black Shale as Reactive Materials (반응매질로서의 영가철 및 블랙셰일에 용존무기 인산염 흡착)

  • Min, Jee-Eun;Park, In-Sun;Ko, Seok-Oh;Shin, Won-Sik;Park, Jae-Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.9
    • /
    • pp.907-912
    • /
    • 2008
  • In order to reduce the availability of dissolved inorganic phosphorus in surface water, lakes, and estuaries, black shale and zero valent iron can be used as reacitve materials. Sorption of phosphate to sampled sediment, black shale, and zero valent iron was quantitatively evaluated in this research. Effect of coexistence of calcium was also tested, since coexisting ions can enhance the precipitation of phosphate. An empirical kinetic model with fast sorption(k$_t$), slow sorption(k$_s$), and precipitation(k$_p$) was well fitted to experiment data from this research. Langmuir and Freundlich sorption isotherms were also used to evaluated phosphate maximum sorption capacity. Calcium ions at 0, 1 and 5 mM affected the precipitation kinetic coefficient in empirical kinetic model but did not have impact on the maximum sorbed concentration.

A Fundamental Study on the Adsorption Capacity of Heavy Metals by Earthworms Cast (지렁이 분변토의 중금속흡착능에 관한 기초연구)

  • Son, Hee-Jeong;Kim, Hyeong-Seok;Song, Young-Chae;Sung, Nak-Chang;Kim, Soo-Saeng
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.4 no.2
    • /
    • pp.55-62
    • /
    • 1996
  • The purpose of this study is the evaluation of adsorption capacity of casts for heavy metals comparing with the activated carbon. The casts was obtained from vermicomposting of the mixed organic sludges which were generated from the treatment facilities for leather wastewater and cattle wastewater. The physico-chemical characteristics of cast was investigated. Also, the batch adsorption experiments of cast and activated carbon for heavy metals were carried out, and the results were analyzed by Freundlich isotherm. The buffering capacity to the acidic wastewater was founded in the cast, and the cation exchange capacity of cast impling adsorption capacity for soluble substances was evaluated as about 55me/100g. Those were implied that the cast have a large potential as a good adsorbent for soluble pollutants in wastewater. From the results of batch experiments, the removal efficiencies of tested various heavy metals including Pb, Cu, Cd, and Cr were very high value as 89-98% for the activated car-bon, and 80~95% for the casts except for Zn. The adsorption equilibriums for the two materials were achieved within 90 minutes. The order of preferable metals in the adsorption was found to be Pb>Cu>Cd>Cr>Zn on the cast and to be Pb>Cd>Cu>Cr>Zn on the activated carbon, respectively. From the above results, it might be con-cluded that cast is effectively available as a good adsorbent to treating the heavy metal bearing wastewater.

  • PDF

Determination of Adsorption Isotherm Parameters by Breakthrough Curves in Activated Carbon and Zeolite 13X Packed Bed (활성탄 및 제올라이트 13X를 충진한 흡착탑에서 파과곡선을 이용한 흡착등온식 상수의 결정)

  • Kang, Sung-Won;Min, Byung-Hoon;Suh, Sung-Sup
    • Applied Chemistry for Engineering
    • /
    • v.16 no.1
    • /
    • pp.131-138
    • /
    • 2005
  • Freundlich isotherms and Toth isotherms were obtained for benzene adsorption on activated carbon and zeolite 13X in static experiments. Breakthrough curves of benzene were measured in adsorption bed packed with the same adsorbents. Relation between breakthrough times and partial pressure of benzene was analyzed and the Freundlich isotherm parameters were determined. Adsorption amount of benzene predicted by the analysis of breakthrough experimental results was relatively consistent with that predicted by the static experimental results. Dynamic experiments for activated carbon bed, where more symmetric breakthrough curves were obtained, produced smaller errors with zeolite bed.

피트휴민(peat-Humin)과 중금속 흡착반응 연구

  • 이창훈;신현상;임동민;강기훈
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.135-138
    • /
    • 2004
  • 본 연구는 중금속으로 오염된 폐수처리에 있어 친환경적 유기흡착제로서 휴믹물질의 활용성을 평가하기 위한 기초 연구로서 이탄(peat moss)으로부터 Humin을 분리 한 후, 중금속 이온(Cd(II),Cu(II))과의 흡착특성을 조사하였다. 이탄으로부터 추출한 peat-Humin의 함량은 94%이상을 나타냈으며, 분자의 작용기 특성은 일반 토양 휴믹물질(soil humic substance)과 유사하였다. peat-Humin과 중금속 이온(Cd(II),Cu(II))과의 흡착 반응은 5분내에 빠른 흡착형을 보였으며, pH 5-6에서 가장 높은 중금속 제거율을 보였다. pH 3의 산성조건에서도 50%정도의 제거율을 보였다. pH 5에서의 등온흡착 실험결과를 Freundlich 등온식에 적용하여 해석한 결과, 각의 중금속에 대한 peat-Humin의 흡착상수(Kf)는 Cd(II)이 8.07 그리고 Cu(II)가 4.56으로 나타났다.

  • PDF

Study on of Process Parameters for Adsorption of Reactive Orange 16 Dye by Activated Carbon (활성탄에 의한 Reactive Orange 16 염료 흡착에 대한 공정 파라미터 연구)

  • Lee, Jong Jib
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.7
    • /
    • pp.667-674
    • /
    • 2020
  • The adsorption of reactive orange 16 (RO 16) dye by activated carbon was investigated using the amount of adsorbent, pH, initial concentration, contact time and temperature as adsorption variables. The investigated process parameters were separation coefficient, rate constant, rate controlling step, activation energy, enthalpy, entropy, and free energy. The adsorption of RO 16 was the highest at pH 3 due to the electrostatic attraction between the cations (H+) on the surface of the activated carbon and the sulfonate ions and hydroxy ions possessed by RO 16. Isotherm data were fitted into Langmuir, Freundlich and Temkin isotherm models by applying the evaluated separation factor of Langmuir (RL=0.459~0.491) and Freundlich (1/n=0.398~0.441). Therefore, the adsorption operation of RO 16 by activated carbon was confirmed as an appropriate removal method. Temkin's adsorption energy indicated that this adsorption process was physical adsorption. The adsorption kinetics studies showed that the adsorption of RO 16 follows the pseudo-second-order kinetic model and that the rate controlling step in the adsorption process was the intraparticle diffusion step. The positive enthalpy change indicated an endothermic process. The negative Gibbs free energy change decreased in the order of -3.16 <-11.60 <-14.01 kJ/mol as the temperature increased. Therefore, it was shown that the spontaneity of the adsorption process of RO 16 increases with increasing temperature.

Equilibrium Kinetics and Thermodynamic Parameters Studies for Eosin Yellow Adsorption by Activated Carbon (활성탄에 의한 Eosin Yellow의 흡착에 대한 평형, 동력학 및 열역학 파라미터에 관한 연구)

  • Lee, Jong Jib
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.5
    • /
    • pp.3319-3326
    • /
    • 2014
  • Eosin yellow is used a dye and colorant but it is harmful toxic substance. In this paper, batch adsorption studies were carried out for equilibrium, kinetics and thermodynamic parameters for eosin yellow adsorption by activated carbon with varying the operating variables like pH, initial concentration, contact time. Equilibrium adsorption data were fitted into Langmuir, Freundlich, Temkin and Dubinin-Radushkevich isotherms. By estimated Langmuir constant value, $R_L$=0.067-0.083, and Freundlich constant value, $\frac{1}{n}=0.237-0.267$, this process could be employed as effective treatment for removal of eosin yellow. From calculated Temkin constant, value, B=1.868-2.855 J/mol, and Dubinin-Radushkevich constant, value, E=5.345-5.735 kJ/mol, this adsorption process is physical adsorption. From kinetic experiments, the adsorption process were found to confirm to the pseudo second order model with good correlation coefficient($r^2$=0.995-0.998). The mechanism of the adsorption process was determined two step like as boundary and intraparticle diffusion.

Isotherm, Kinetic and Thermodynamic Characteristics for Adsorption of Congo Red by Activated Carbon (활성탄에 의한 Congo Red의 흡착에 대한 등온선, 동력학 및 열역학적 특성)

  • Lee, Jong Jib
    • Korean Chemical Engineering Research
    • /
    • v.53 no.1
    • /
    • pp.64-70
    • /
    • 2015
  • Batch experiment studies were carried out for adsorption of congo red using granular activated carbon with various parameters such as activated carbon dose, pH, initial dye concentration, temperature and contact time. Equilibrium experimental data are fitted to the Langmuir, Freundlich, Temkin and Dubin-Radushkevich isotherm equations. From Freundlich's separation factor (1/n) estimated, adsorption could be employed as effective treatment method for adsorption of congo red from aqueous solution. Base on Temkin constant (B) and Dubinin-Radushkevich constant (E), this adsorption process is physical adsorption. Adsorption kinetics has been tested using pseudo-first order and pseudo second order models. The results followed pseudo second order model with good correlation. Adsorption process of congo red on granular activated carbon was endothermic (${\Delta}H$=42.036 kJ/mol) and was accompanied by decrease in Gibbs free energy (${\Delta}G$=-2.414 to -4.596 kJ/mol) with increasing adsorption temperature.

Characteristics of Equilibrium, Kinetic and Thermodynamic for Adsorption of Acid Blue 40 by Activated Carbon (활성탄에 의한 Acid Blue 40 흡착에 있어서 평형, 동력학 및 열역학적 특성)

  • Lee, Jong Jib
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.12
    • /
    • pp.592-599
    • /
    • 2018
  • The kinetics and thermodynamics of the adsorption of acid blue 40 from an aqueous solution by activated carbon were examined as a function of the activated carbon dose, pH, temperature, contact time, and initial concentration. The adsorption efficiency in a bathtub was increased at pH 3 and pH 11 due to the presence of sufonate ions ($SO_3{^-}$) and amine ions ($NH_2{^+}$). The equilibrium adsorption data were fitted to the Langmuir, Freundlich and Temkin isotherms. The results indicated that the Langmuir model provides the best correlation of the experimental data. The separation factor of the Langmuir and Freundlich model showed that the adsorption treatment of acid blue 40 by activated carbon could be an effective adsorption process. The adsorption energy determined by the Temkin equation showed that the adsorption step is a physical adsorption process. Kinetics analysis of the adsorption process of acid blue 40 on activated carbon showed that a pseudo second order kinetic model is more consistent than a pseudo second order kinetic model. The estimated activation energy was 42.308 kJ/mol. The enthalpy change (80.088 J/mol) indicated an endothermic process. The free energy change (-0.0553 ~ -5.5855 kJ/mol) showed that the spontaneity of the process increased with increasing adsorption temperature.