• Title/Summary/Keyword: Fretting wear

Search Result 168, Processing Time 0.029 seconds

A study on estimating of contact pressure and surface shape change due to fretting wear (프레팅 마멸에 의한 접촉 응력 및 표면현상 변화 예측에 관한 연구)

  • Kim, Jong-Sung;Lee, Sang-Don;Cho, Yong-Joo
    • Tribology and Lubricants
    • /
    • v.25 no.2
    • /
    • pp.114-119
    • /
    • 2009
  • Fretting occurs wherever short amplitude reciprocating sliding between contacting surfaces is sustained for a large number of cycles. The fundamental characteristic of fretting is the very small amplitude of sliding and combination of different wear mechanism. Predicting wear is important to enhance reliability of the parts. The objective of this paper is to predict fretting wear by using a contact analysis considering wear process. This construction will give us important information to know a property of fretting wear.

Sliding Wear and Fretting Wear of Steam Generator Tube Materials (증기발생기 튜브재질의 미끄럼 마멸 및 프레팅 마멸 특성)

  • 김동구;조정우;이영제
    • Tribology and Lubricants
    • /
    • v.17 no.5
    • /
    • pp.380-385
    • /
    • 2001
  • In nuclear power steam generators, high flow rates can induce vibration of the tubes resulting in fretting wear damage due to contacts between the tubes and their supports. In this paper the fretting wear tests and the sliding wear tests were performed using the steam generator tube materials of Inconel 600 and 690 against STS 304. Sliding tests with the pin-on-disk type tribometer were done under various applied loads and sliding speeds at air environment. Fretting tests were done under various vibrating amplitudes and applied normal loads. From the results of sliding and fretting wear tests, the wear of Inconel 600 and 690 can be predictable using the work rate model. Depending on normal loads and vibrating amplitudes, distinctively different wear mechanisms and often drastically different wear rates can occur. It was found the results that the wear coefficients for Inconel 600 and 690 were 262.3$\times$10$\^$-15/Pa$\^$-1/ and 209.2$\times$10$\^$-15/Pa$\^$-1/, respectively. This study shows that Inconel 690 can provide much better wear resistance than Inconel 600 in air.

Fretting Wear Simulation of Press-Fitted Shaft with Finite Element Analysis and Influence Function Method (유한요소해석과 영향함수법을 이용한 압입축의 프레팅 마모해석)

  • Lee, Dong-Hyong;Kwon, Seok-Jin;Choi, Jae-Boong;Kim, Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.1
    • /
    • pp.54-62
    • /
    • 2008
  • In this paper the fretting wear of press-fitted specimens subjected to a cyclic bending load was simulated using finite element analysis and numerical method. The amount of microslip and contact variable at press-fitted and bending load condition in a press-fitted shaft was analysed by applying finite element method. With the finite element analysis result, a numerical approach was applied to predict fretting wear based on modified Archard's equation and updating the change of contact pressure caused by local wear with influence function method. The predicted wear profiles of press-fitted specimens at the contact edge were compared with the experimental results obtained by rotating bending fatigue tests. It is shown that the depth of fretting wear by repeated slip between shaft and boss reaches the maximum value at the contact edge. The initial surface profile is continuously changed by the wear at the contact edge, and then the corresponding contact variables are redistributed. The work establishes a basis for numerical simulation of fretting wear on press fits.

Evaluation of Fatigue Crack Initiation Life in a Press-Fitted Shaft Considering the Fretting Wear (프레팅 마모를 고려한 압입축의 피로균열 발생수명 예측)

  • Lee, Dong-Hyong;Kwon, Seok-Jin;You, Won-Hee;Choi, Jae-Boong;Kim, Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.10
    • /
    • pp.1091-1098
    • /
    • 2009
  • In this paper, the procedure to estimate fatigue crack initiation life has been established by considering fretting wear and multiaxial stress states on the contact surface of press-fitted shafts. And a method to calculate the local friction coefficient during the running-in period of fretting wear process has been proposed. The predicted result of worn surface profile in the press-fitted shaft with non-linear local friction coefficient can avoid excessive wear depth estimation compared with that for the case of constant local friction coefficient. Furthermore, the predicted fatigue crack initiation lives based on Smith-Watson-Topper model considering the fretting wear are in good agreement with the experimental data. Consequently, the present method is valid not only for predicting worn surface profile, but also for assessing fatigue crack initiation lives considering the fretting wear during the running-in period in press fits.

Fretting Wear Characteristics of Nuclear Fuel Rod Material (핵연료봉재의 프레팅 마멸 특성)

  • 김태형;조광희;김석삼
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1996.04b
    • /
    • pp.25-29
    • /
    • 1996
  • The fretting wear characteristics for Zircaloy-4 tube used as fuel rod in the nuclear power plant have been investigated. The fretting wear tester was designed and manufactured for this experiment. This study was focused on main factors of fretting wear, cycle, slip amplitude and normal load. The worn surfaces were observed by SEM.

  • PDF

Fretting Oamage Evaluation of Zircaloy-Inconel Contact (지르칼로이-인코넬 접촉에서의 프레팅 손상 평가)

  • 김태형;김석삼
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.06a
    • /
    • pp.263-268
    • /
    • 2000
  • The fretting damage of the contact between Zircaloy-4 and Inconel 600 have Investigated. A fretting wear tester was designed to be suitable for this fretting test. In this study, the number of cycles, slip amplitude and normal load were selected as main factors of fretting wear. As the result of this research the wear volume increased with the increase of loads, slip amplitudes and the number of cycles and was more affected by slip amplitudes rather than by load. According to SEM, stick, partial slip, gross slip were observed on the surface of both specimens and wavy worn surfaces as the typical fretting damage were also Investigated due to accumulation of plastic flow.

  • PDF

Fretting Wear Characteristics of Zircaloy-4 Tube in Light Water (경수중에서 지르칼로이-4 튜브의 프레팅 마멸특성)

  • 조광희;노규철;김석삼;조성재
    • Tribology and Lubricants
    • /
    • v.14 no.4
    • /
    • pp.88-94
    • /
    • 1998
  • The fretting wear characteristics of Zircaloy-4 tube in light water were investigated experimentally. A fretting wear tester was designed to be suitable for this fretting test. This study was focused on the effects due to the combination of normal load, slip amplitude and number of cycles as the main factors of fretting. The results of this study showed that the wear volume increased abruptly at slip amplitude above 100 ${\mu}{\textrm}{m}$, which is defined as critical slip amplitude of Zircaloy-4 tube in light water, and that under 160 ${\mu}{\textrm}{m}$ the wear volume decreased as load increased at the same slip amplitude.

Comparison of Fretting Wear Characteristics of Zircaloy-4 Tube in Light Water and in Air (지르칼로이-4 튜브 프레팅 마멸 특성의 환경 의존성과 마멸기구)

  • 조광희;김석삼
    • Tribology and Lubricants
    • /
    • v.15 no.1
    • /
    • pp.83-89
    • /
    • 1999
  • The fretting wear behaviour of Zircaloy-4 tube used as the fuel rod cladding in PWR nuclear power plants has been investigated at the different test environment, in light water and in air as a function of slip amplitude, normal load, test duration and frequency. Zircaloy-4 tubes were used for both of oscillating and stationary specimens. A fretting wear tester was designed to be suitable for this fretting test. The wear volume and specific wear rate of Zircaloy-4 tube in water was greater than those in air under various slip amplitude. Delaminates and surface cracks were observed at low slip amplitude and high load of fretting test in water, but the traces of adhesion and plowing were observed at and above 200 Um. The water accelerates the wear of Zircaloy-4 tube at lower slip amplitude in fretting.

Fretting Wear Characteristics of STS304 Steel in Seawater (해수중에서 STS304강의 프레팅 마멸특성)

  • 김은구;김태형;김석삼
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.71-77
    • /
    • 1999
  • The fretting wear characteristics of STS304 steel in seawater were investigated experimentally. A fretting wear tester was designed to be suitable for this fretting test. This study was focused on the effects due to the combination of normal load, slip amplitude and number of cycles and corrosive environment as the main factors of fretting. The results of this study showed that the wear volume increased abruptly at slip amplitude between 70${\mu}{\textrm}{m}$~ 100${\mu}{\textrm}{m}$ by fracture of oxide layers but above that slip amplitude the wear volume increased steadily.

  • PDF

Comparative study on fretting wear of aerospace, biomedical, and nuclear components (항공, 바이오, 원자력 부품의 프레팅 마모 현상 비교 연구)

  • Jun, Tea-Sung;Kim, Kyungmok
    • Journal of Aerospace System Engineering
    • /
    • v.11 no.2
    • /
    • pp.16-22
    • /
    • 2017
  • This paper investigates fretting wear damage in aerospace, biomedical, and nuclear components. Experimental parameters are identified that affect fretting wear damage. The parameters observed in industries are directly compared. The magnitudes of frequency, relative displacement, and normal force are found to differ depending on the contacting components where fretting wear occurs. In addition, recent solutions to minimize fretting wear damage are reviewed. The solutions include depositing of a low-friction coating, surface treatment, selection of substrate material, and optimal design of contact geometries. This comparative study suggests useful methods and solutions for analyzing fretting wear damage and for designing tribo-components.