• Title/Summary/Keyword: Fretting contact

Search Result 93, Processing Time 0.031 seconds

Prediction of Fretting Fatigue Life for Lap Joint Structures of Aircraft (항공기 겹침이음 조립구조의 프레팅 피로수명 예측)

  • Kwon, Jung-Ho;Joo, Seon-Yeong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.7
    • /
    • pp.642-652
    • /
    • 2009
  • Most of lap jointed aircraft structures encounter the fretting damages, which provoke fretting cracks prematurely and lead to significant reduction of fatigue life. In the case of ageing aircrafts especially, this fretting fatigue problem is a fatal threat for the safety and airworthiness. Recently, as the service life extension program(SLEP) of ageing aircrafts has become a hot issue, the prediction of fretting fatigue life is also indispensable. On these backgrounds, a series of experimental tests of fretting fatigue on bolted lap joint specimens, were performed. And the fretting crack initiation and propagation life of each specimen were evaluated using existing and newly proposed prediction models with the fretting parameters obtained from the FEA results for elasto-plastic contact stress analyses. The validations of prediction models were also discussed, comparing the prediction results with experimental test ones.

A Study on the Nucleation of Fretting Fatigue Cracks at the Heterogeneity Material (이종재료에서 프레팅 피로 균열의 생성에 관한 연구)

  • Goh Jun Bin;Goh Chung Hyun;Lee Kee Seok
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.3
    • /
    • pp.103-109
    • /
    • 2005
  • Since fretting fatigue damage accumulation occurs over relatively small volumes, the role of the microstructure is quite significant in fretting fatigue analysis. The heterogeneity of discrete grains and their crystallographic orientation can be accounted for using continuum crystallographic cyclic plasticity models. Such a constitutive law used in parametric studies of contact conditions may ultimately result in more thorough understanding of realistic fretting fatigue processes. The primary focus of this study is to explore the influence of microstructure as well as the magnitude of the normal force and tangential force amplitude during the fretting fatigue process. Fretting maps representing cyclic plastic strain behaviors are also developed to shed light on the cyclic deformation mechanisms.

Development of Algorithm for Predicting Fretting Wear (프레팅 마멸 예측을 위한 알고리즘 개발)

  • Cho, Yong-Joo;Kim, Tae-Wan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.9
    • /
    • pp.983-989
    • /
    • 2011
  • A numerical algorithm for predicting fretting wear was developed using the boundary element method (BEM). A contact analysis was performed numerically using the relation between the elastic displacement and uniformly distributed loading of a rectangular patch on a semi-infinite solid. Geometrical updating based on nodal wear depths was performed. The wear depths were computed using the Archard's equation for sliding wear. In order to investigate the efficiency of BEM for predicting fretting wear, a problem involving a two-dimensional cylinder on a flat contact was analyzed, comparing it with the simulation model proposed by McColl et al. that was based on the finite element method. The developed method was then applied to the analysis of a spherical contact and it was shown that the developed simulation technique could efficiently predict fretting wear. Moreover, the effect of a step cycle on the solution obtained by the developed method was investigated.

A Study on Fretting Fatigue Life Prediction for Cr-Mo Steel(SCM420) (크롬-몰리브덴강(SCM420)에 대한 프레팅 피로수명 예측에 관한 연구)

  • Kwak, Dong-Hyeon;Roh, Hong-Rae;Kim, Jin-Kwang;Cho, Sang-Bong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.4 s.193
    • /
    • pp.123-130
    • /
    • 2007
  • Recently, a lot of work and interest have been devoted to the development of multiaxial fatigue parameters for fretting fatigue life prediction. In this study, the fretting fatigue lift and critical location ware estimated and evaluated through the multiaxial fatigue theories in a cylinder-on-flat contact configuration far Cr-Mo steel, SCM420, the material commonly is used in gears of the automobile and rollers of the conveyor. The strain-life curve was obtained from fatigue test for SCM420. The Fretting fatigue life and critical location were estimated through stress distributions, SWT-parameters and FS-parameters obtained from FEA. This paper showed possibility of applying multiaxial fatigue theories to fretting fatigue lift prediction comparing predicted life with experimental results.

Investigation of Wear Mechanisms of Tube Materials for Nuclear Steam Generators due to Stick-Slip Behavior under Fretting Conditions (프레팅 조건하에 있는 증기 발생기 세관재의 스틱-슬립 영역별 마멸 메커니즘 규명)

  • Lee Young-Ze;Jeong Sung-Hoon;Park Chi-Yong
    • Tribology and Lubricants
    • /
    • v.21 no.1
    • /
    • pp.33-38
    • /
    • 2005
  • Fretting is the oscillatory motion with very small amplitudes, which usually occurs between two solid surfaces in contact. Fretting wear is the removal of material from contacting surfaces through fretting action. Fretting wear of steam generator tubes in nuclear power plant becomes a serious problem in recent years. The materials for the tubes usually are Inconel 690 (I-690) and Inconel 600 (I-600). In this paper, fretting wear tests for I-690 and I-600 were performed under various applied loads in water at room temperature. Results showed that the fretting wear loss of I-690 and I-600 tubes was largely influenced by stick-slip. The fretting wear mechanisms were the abrasive wear in slip regime and the delamination wear in stick regime. Also, I-690 had somewhat better wear resistance than I-600.

A Study on Fretting Fatigue of High Strength Aluminum Alloys (고강도 알루미늄 합금의 Fretting Fatigue에 관한 연구)

  • Lee, Hak-Sun;Kim, Sang-Tae;Choi, Sung-Jong;Yang, Hyun-Tae;Kim, Jae-Kyoung;Lee, Dong-Suk
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.168-173
    • /
    • 2004
  • Fretting is a kind of surface degradation mechanism observed in mechanical components and structures. The fretting damage decrease in 50-70% of the plain fatigue strength. This may be observed in aircraft, automobile and nuclear power plant used in special environment and various loading conditions. In the present study, the characteristics of the fretting fatigue are investigated using the two aluminum alloy(Al2024-T3511 and Al7050-T7451). Through the experiment, it is found that the fretting fatigue strength of the Al7050-T7451 alloy decreased about 50% from the plain fatigue strength, while the fretting fatigue strength of the Al2024-T3511 alloy decreased about 45%. The tire track was widely observed in fracture surface area of oblique crack which was induced by contact pressure. These results can be the basic data to the structural integrity evaluation of aluminum alloy subjected to fretting damage.

  • PDF

Evaluation of Fatigue Crack Initiation Life in a Press-Fitted Shaft Considering the Fretting Wear (프레팅 마모를 고려한 압입축의 피로균열 발생수명 예측)

  • Lee, Dong-Hyong;Kwon, Seok-Jin;You, Won-Hee;Choi, Jae-Boong;Kim, Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.10
    • /
    • pp.1091-1098
    • /
    • 2009
  • In this paper, the procedure to estimate fatigue crack initiation life has been established by considering fretting wear and multiaxial stress states on the contact surface of press-fitted shafts. And a method to calculate the local friction coefficient during the running-in period of fretting wear process has been proposed. The predicted result of worn surface profile in the press-fitted shaft with non-linear local friction coefficient can avoid excessive wear depth estimation compared with that for the case of constant local friction coefficient. Furthermore, the predicted fatigue crack initiation lives based on Smith-Watson-Topper model considering the fretting wear are in good agreement with the experimental data. Consequently, the present method is valid not only for predicting worn surface profile, but also for assessing fatigue crack initiation lives considering the fretting wear during the running-in period in press fits.