• Title/Summary/Keyword: Freshwater discharge

Search Result 169, Processing Time 0.03 seconds

Impact of Estuarine Dams on the Estuarine Parameter Space and Sediment Flux Decomposition: Idealized Numerical Modeling Study

  • Figueroa, Steven M.;Lee, Guan-hong;Chang, Jongwi;Lagamayo, Kenneth D.;Jung, Nathalie W.;Son, Minwoo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.276-276
    • /
    • 2022
  • Estuarine dams are constructed for securing freshwater resources, flood control, and improving upstream navigability. However, their impact on estuarine currents, stratification, and sediment fluxes is not well understood. To develop a general understanding, an idealized modeling study was carried out. Tide and river forcing were varied to produce strongly stratified, partially mixed, periodically stratified, and well-mixed estuaries. Each model ran for one year. Next, the models were subject to the construction of an estuarine dam and run for another year. Then, the pre- and post-dam conditions were compared. Results showed that estuarine dams can amplify the tidal range and reduce the tidal currents. The post-dam estuaries tended to be a salt wedge during freshwater discharge and a bay during no freshwater discharge. For all estuaries, the estuarine turbidity maximum moved seaward, and the suspended sediment concentrations tended to decrease. In terms of sediment flux mechanisms, the estuarine dam increased the seaward river runoff for cases with strong river, and increased the landward tidal pumping for cases with strong tides.

  • PDF

Effect of Freshwater Discharge from a Water Reservoir on the Flow Circulation in the Semi-Closed Harbor (유수지로부터의 담수 방류가 항 내 해수순환에 미치는 영향)

  • Choi, Jae Yoon;Kim, Jong Wook;Lee, Hye Min;Yoon, Byung Il;Woo, Seung-Buhm
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.33 no.1
    • /
    • pp.1-12
    • /
    • 2021
  • To investigate the effect of freshwater discharge on the seawater circulation in the semi-closed harbor, a 3-D hydrodynamic model was applied to the International Ferry Terminal (IFT). The model run is conducted for 45 days (from May 15 to June 30, 2020), and the reproducibility of the model for time-spatial variability of current velocity and salinity was verified by comparison with model results and observation data. There are two sources of freshwater towards inside of the IFT: Han River and water reservoir located in the eastern part of IFT. In residual current velocity results, the two-layer circulation (the seaward flow near surface and the landward flow near bottom)derived from the horizontal salinity gradient in only considering the discharge from a Han River is more developed than that considering both the Han River and water reservoir. This suggests that the impact of freshwater from the reservoir is greater in the IFT areas than that from a Han River. Additionally, the two-layer circulation is stronger in the IFT located in southern part than Incheon South Port located in northern part. This process is formed by the interaction between tidal current propagating into the port and freshwater discharge from a water reservoir, and flow with a low salinity (near 0 psu) is delivered into the IFT. This low salinity distribution reinforces the horizontal stratification in front of the IFT, and maintains a two-layer circulation. Therefore, local sources of freshwater input are considered to estimate for mass transport process associated with the seawater circulation within the harbor and It is necessary to perform a numerical model according to the real-time freshwater flow rate discharged.

Spatial and Temporal Variability of Residual Current and Salinity Distribution according to Freshwater Discharge during Monsoon in Nakdong River Estuary (낙동강 하구역의 홍수기 방류에 의한 수로별 유속 잔차 및 염분 분포)

  • Song, Jin Il;Yoon, Byung Il;Kim, Jong-Wook;Lim, Chae Wook;Woo, Seung-Buhm
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.26 no.3
    • /
    • pp.184-195
    • /
    • 2014
  • After building the dyke in Nakdong River Estuary, mixing of freshwater inflow to ocean and seawater to upstream is controlled by operating the sluice gates. Mixing and convergence of seawater and freshwater by opening the sluice gates, have a major impact on the circulation of seawater in the Nakdong River Estuary. Field measurement was carried out to study the characteristics of the estuary flow and environment of each channel of the Nakdong River Estuary. Vertical salinity distribution and residual current is different from each channel by the river discharge and topographic changes.

Characteristics of Water Quality and factor Analysis on the Variations of Water Quality in Coastal Sea around the Keum River Estuary in Summer (하계 금강하구 주변해역의 수질특성과 수질변동 요인분석)

  • Kwon Jung-No;Kim Jong-Gu;You Sun-Jae
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.3 no.4
    • /
    • pp.3-22
    • /
    • 2000
  • To know characteristics of water quality in coastal sea around the Keum river estuary in summer, we studied the water quality of surface, middle and bottom level during Jun e~september, 1998. The mean concentrations of COD, DIN, DIP & chlorophyll-a were 1.36mg/L, 28.60㎍-at/L, 0.48㎍-at/L and 4.14㎍/L, respectively, which were over eutrophication criteria in sea water. After the Keum river dyke was constructed, seasonal freshwater discharge was largely changed. About 80% of total annual freshwater discharge was concentrated in summer as rainy season from July to September. The correlation coefficient of DIN versus salinity was shown to be high, and thus the concentration of DIN was closely related to freshwater discharge. Maximum Chlorophyll-a concentration was occurred in September, due to increased DIP concentration, high water temperature and low salinity after heavy rainfall in August. The results of Principal Component Analysis showed that the first factor represented a series of eutrophication factors, the second factor w3s a valiance of seasonal fluctuation, and the third was a variance of progress of mass change.

  • PDF

Effectiveness of Double Negative Barriers for Mitigation of Sewater Intrusion in Coastal Aquifer: Sharp-Interface Modeling Investigation (경계면 수치 모델을 이용한 해안 지역 이중 양수정의 해수침투 저감 효과)

  • Jung, Eun Tae;Lee, Sung Jun;Lee, Mi Ji;Park, Namsik
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.11
    • /
    • pp.1087-1094
    • /
    • 2014
  • Saltwater pumping method can be used to mitigate saltwater intrusion in coastal aquifers. However, the saltwater pumping well may discharge large freshwater along with saltwater, thereby wasting precious resources. A double negative barrier was proposed: an inland well to capture freshwater and a saltwater well near the coastline to pump saltwater. A previous study anaylzed effects of double negative barriers in dispersion-dominated coastal aquifers and determined the critical pumping rate at the saltwater well which minimized the saltwater ratio at the freshwater well. However, the study resulted in 1~15% of saltwater ratios, which were too high, for example, for drinking water standards. This study analyzed cases that were considered in the previous study, but for advection-dominated cases, and found that freshwater with sufficiently low saltwater ratios could be developed at the freshwater well. In addition, for optimal groundwater management of a watershed not only the minimum saltwater ratio at the freshwater well but also the least freshwater wasted at the saltwater well must be pursued.

Estimation of the Freshwater Advection Speed by Improvement of ADCP Post-Processing Method Near the Surface at the Yeongsan Estuary (ADCP 표층유속 자료처리방법 개선을 통한 영산강 하구 표층 방류수 이류속도 산정)

  • Shin, Hyun-Jung;Kang, Kiryong;Lee, Guan-Hong
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.19 no.3
    • /
    • pp.180-190
    • /
    • 2014
  • It has been customary to exclude top 10-20% of velocity profiles in the Acoustic Doppler Current Profiler (ADCP) measurement due to side lobe effects at the boundary. To better understand the mixing in the Yeongsan estuary, the freshwater advection speed (FAS) was recovered from highly contaminated ADCP data near the surface. The velocity profiles were measured by using ADCP at two stations in the Yeongsan estuary during August 2011: one was located in front of the Yeongsan estuarine dam and the other was deployed near Goha Island. The FAS was recovered from the ADCP data set by applying rigorous post-processing methods and compared with the sediment advection speed (SAS). The SAS was determined by the peak time difference of suspended sediment concentration between two stations in the channel, divided by the distance of two stations. The FAS and the SAS showed very similar value when the freshwater discharge was greater than $2.0{\times}10^7$ ton and the SAS was a bit greater when the freshwater discharge was smaller. Since the FAS was on average about 0.8 m/s greater than the velocity at 0.8 of water depth from the bottom, the net discharge, estimated with recovered FAS and integrated over water depth and tidal cycle, was directed seaward during the high discharge contrary to the onshore direction of the net discharge estimated with 0.8 of water depth from the bottom. Moreover, the velocity shear and Richardson number changed when the FAS was used. Thus, the importance of the true FAS is appreciated in the investigation of the surface layer stability. If currents, temperature and salinity were observed for longer time in the future, it could be possible to more accurately understand the formation and decay of stratification as well as the suspended sediment transport processes.

Enhanced Primary Production in Response to Freshwater Inflow in the Nakdong River Estuary: Characteristics of land-Ocean Coupling (LOC) (낙동강 하구에서 담수 유입에 따른 연안 클로로필-a 증가 : 낙동강의 육상-해양 coupling 패턴 분석)

  • KIM, SUHYUN;AN, SOONMO
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.26 no.2
    • /
    • pp.96-109
    • /
    • 2021
  • Since terrestrial input plays a major role in coastal primary production, an understanding of land-ocean coupling (LOC) is key to understand coastal ecological changes. In this study, the LOC has been classified into three stages (i.e., the baseflow, plume event and residual flow). In order to characterize its pattern in Nakdong River estuary, multi-platform data were obtained from remote sensing (geostationary ocean color image (GOCI)), in-situ measurement (marine environment information system (MEIS)), on-site measurement (discharge data and meteorological data). The MEIS data were grouped into three stages of LOC using principal component analysis (PCA), and the LOC (2013 ~ 2018) was examined at each stage using multi-platform data. In the Nakdong River estuary, the maximum value of chlorophyll-a (chl-a) was unexpectedly appeared during the plume event. It is assumed that there was no significant increase in turbidity, expected during the typical plume event, together with the weak flushing effect, caused the enhanced phytoplankton growth. Compared with other estuaries, LOC is common in estuaries affected by freshwater inflow, but LOC has different pattern depending on the size of the plume. While estuaries that form small plumes of about 10 km (low freshwater discharge and weak flushing effect) observed high chl-a in the plume event because the phytoplankton can response to the increased nutrient more rapidly. estuaries that form large plumes of more than 100 km est (high freshwater discharge and strong flushing effect) follow the typical LOC pattern conceptualized in this study (high chl-a in the residual flow).

Seasonal Variations in Seawater Quality Due to Freshwater Discharge in Asan Bay (담수유입으로 인한 아산만 해양수질의 계절적인 변동)

  • Jeong, Yong Hoon;Cho, Min Kyun;Lee, Dong Gi;Doo, Sun Min;Choi, Hyun Soo;Yang, Jae Sam
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.5
    • /
    • pp.454-467
    • /
    • 2016
  • In order to understand the seasonal characteristics of seawater in Asan Bay, the quality of this water was observed over four seasons form December 2011 to February 2013, and correlations between seawater quality variations and freshwater input were analyzed by a statistical method. The results, based on factor analysis, indicate that the two most important factors in understanding variation are freshwater input (37.7 %) and seawater exchange (24.4 %). Asan-ho and Sapgyo-ho are two major freshwater sources that affect inner (eastern) Asan Bay. Discharged freshwater from the inner bay strongly affects the spatial and temporal distribution of seawater in the bay overall during the summer rainy season. On other hand, water re-suspended from the bottom of the bay overwhelmed the water quality during the dry winter season. In conclusion, seasonal freshwater discharge dominated the water quality of the bay, and, consequently, DIP limited the growth of phytoplankton in the bay.

Mathematical Simulation of Seawater Intrusion

  • Kim, Young Sil;Kwon, YongHoon;Cho, Chung-Ki
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.2 no.1
    • /
    • pp.72-87
    • /
    • 1998
  • The subject of this research is to determine the optimal pumping rate so that seawater can not intrude so much to the freshwater region. There are several ingradients affecting the fluctuation of the interface: some geological parameters, fluid parameters, the precipitation, artificial recharge and discharge(due to pumping) are such ones. The parameter of particular interest is the pumpage of freshwater. In this article all the parameters are assumed to be known except the freshwater pumping rate. By considering a suitable inverse or parameter estimation problem we want to determine the pumpage which will not make the interface rise over the permissible bound.

  • PDF

A study on the tidal phenomena of Nagdong River-mouth - Tidal fluctuations of Nagdong River - (낙동강 하구 호석에 관한 조사연구(I)- 낙동강의 조위변동 -)

  • 양윤모;김탁부
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 1982.07a
    • /
    • pp.3-24
    • /
    • 1982
  • The relations between tidal fluctuation and freshwater discharge are stuied dy use of observed data in the estuarine region of the Nagdong Rivre. Damping modulus which represents the resistance to propagation of tidal wave is estimated, and it is verified that when the fresh water discharge is lower than 300 m/sec., the elevation of mean-water-level at Gupo is the same as mean sea-water-level.

  • PDF