• Title/Summary/Keyword: Fresh Weight

Search Result 2,382, Processing Time 0.034 seconds

Fundamental Properties of Lightweight Concrete with Dry Bottom Ash as Fine Aggregate and Burned Artificial Lightweight Aggregate as Coarse Aggregate (건식 바텀애시 경량 잔골재와 소성 인공경량 굵은골재를 사용한 콘크리트의 기초 특성)

  • Choi, Hong-Beom;Kim, Jin-Man
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.4
    • /
    • pp.267-274
    • /
    • 2018
  • Though the wet bottom ash has been used as a type of lightweight aggregate, dry bottom ash, new type bottom ash from coal combustion power plant, has scarcely researched. It is excellent lightweight aggregate in the view point of construction material. This study is performed to check the applicability of dry bottom ash as a fine aggregate in lightweight aggregate concrete, by analyzing various properties of fresh and hardened concrete. We get results that the slump of concrete is within the target range at less than 75% replacement rate of dry bottom ash, the air content is not affected by the replacement rate of dry bottom ash, the bleeding capacity is less than $0.025cm^3/cm^2$ at 75% under of the replacement rate of dry bottom ash, and the compressive strength of concrete show 90% or more comparing the base mix while initial strength development is a little low. Oven dry unit weight of concrete is reduced by 8.9% when replaced 100% dry bottom ash, and dry shrinkage tends to decrease depending on increase of replacement rate of dry bottom ash. Modulus of elasticity of concrete shows no decease at 50% over of the replacement rate of dry bottom ash, while modulus of elasticity of concrete decreases when the replacement rate increases further. The dry bottom ash, when used as a fine aggregate in lightweight concrete, can be used effectively without any deterioration in quality.

Development of suitable substrate of Sparassis latifolia for bottle cultivation (꽃송이버섯 병재배 적합 배지 개발)

  • Gwon, Hee-Min;Lee, Yun-Hae;Choi, Jong-In;Jeon, Dae-Hoon;Lee, Yong-seon;Lee, Young-Soon;Kim, Jeong-Han
    • Journal of Mushroom
    • /
    • v.17 no.3
    • /
    • pp.126-131
    • /
    • 2019
  • This study sought to identify the optimum substrate composition for the stable bottle cultivation of Sparassis latifolia. The main substrate was fermented larch sawdust. Six nutrient sources were mixed at a maximum volume ratio of 20%. The fresh weight of fruit body was the highest at 128.5 g for GMSL69033 and 126.6 g for 'Neoul' in the treatments of beet pulp and corn flour in a volume ratio of 15:5. In addition, the total cultivation period was 94 days, which was shorter than that required for other treatments. The selected substrate characteristics were pH 4.7, C:N (carbon to nitrogen) ratio of 106:4, moisture content of 70%, and air filling porosity of 38%. We plan to develop new income items through research on mycelial incubation and fruit body growth conditions.

Effect of Green Manure Incorporation and Solarization on Root Rot Disease of 3-year-old Ginseng in Soil of Continuous Cropping Ginseng (녹비작물 토양환원과 태양열 소독에 의한 3년생 인삼의 뿌리썩음병 억제효과)

  • Seo, Mun Won;Lee, Sung Woo;Lee, Seung Ho;Jang, In Bok;Heo, Hye Ji
    • Korean Journal of Medicinal Crop Science
    • /
    • v.27 no.4
    • /
    • pp.284-291
    • /
    • 2019
  • Background: Ginseng root rot disease, caused by Cylindrocarpon destructans and Fusarium solani is a major cause of replant failure in continuous cropping ginseng. Methods and Results: To control replant injury in soil infected with C. destructans and F. solani, biosolarization was performed by covering the plot with transparent polyethylene film after adding green manure of maize and sunflower for the summer season. Per 10 a, fresh and dry weight of maize was 10.1 and 2.5 tons, respectively, and that of sunflower was 8.1 tons and 1.2 tons, respectively. Mean maximum temperature at 20 cm depth was $33.2^{\circ}C$, $41.5^{\circ}C$ and $41.8^{\circ}C$ in the control, maize-incorporated and sunflower-incorporated plots, respectively. The elapsed time over $40^{\circ}C$ was 36.4 h in the maize-incorporated plot and 77.3 h in the sunflower-incorporated plot. Biosolarization increased $NO_3$ content in soil, while content of organic matter, Ca, and Mg was decreased. Electrical conductivity, $NO_3$ and $P_2O_5$ in soil significantly increased after two years of biosolarization. The number of spores of C. destructans in soil was significantly decreased by biosolarization, and sunflower treatment was more effective than maize treatment in decreasing the number of spores. Root yield of 3-year-old ginseng was significantly increased by biosolarization, however, there was no significant difference between maize and sunflower treatments. Rate of root rot in 3-year-old ginseng decreased to 16.5% with the incorporation maize and 5.0% with the incorporation of sunflower, while that in control 25.6%. Conclusions: Biosolarization was effective in inhibiting ginseng root rot by decreasing the density of root rot disease and improving soil chemical properties.

Screening of Bacterial Strains for Alleviating Drought Stress in Chili Pepper Plants (고추 식물의 건조 스트레스 완화를 위한 미생물 선발)

  • Kim, Sang Tae;Yoo, Sung-Je;Song, Jaekyeong;Weon, Hang-Yeon;Sang, Mee Kyung
    • Research in Plant Disease
    • /
    • v.25 no.3
    • /
    • pp.136-142
    • /
    • 2019
  • Drought stress is considered as one of major abiotic stresses; it leads to reduce plant growth and crop productivity. In this study, we selected bacterial strains for alleviating drought stress in chili pepper plants. As drought-tolerant bacteria, 28 among 447 strains were pre-selected by in vitro assays including growth in drought condition with polyethylene glycol and plant growth-promoting traits including production of 1-aminocyclopropane-1-carboxylate deaminase, indole-3-acetic acid and exopolysaccharide. Sequentially, 7 among pre-selected 28 strains were screened based on relative water content (RWC); GLC02 and KJ40, among seven strains were finally selected by RWC and malondialdehyde (MDA) in planta trials under an artificial drought condition by polyethylene glycol solution. Two strains GLC02 and KJ40 reduced drought stress in a natural drought condition as well as an artificial condition. Strains GLC02 or KJ40 increased shoot fresh weight, chlorophyll and stomatal conductance while they decreased MDA in chili pepper plants under a natural drought condition. However, two strains did not show biocontrol activity against diseases caused by Phytophthora capsici and Xanthomonas campestris pv. vesicatoria in chili pepper plants. Taken together, strains GLC02 or KJ40 can be used as bio-fertilizer for alleviation of drought stress in chili pepper plants.

Effect of Homemade Liquid Fertilizers on Chemical Property and Microbial Activity of Soil and Cucumber Growth (자가제조 액비처리가 토양 화학성과 미생물상 및 오이의 생장에 미치는 영향)

  • Jung, Ji-Sik;Jung, Seok-Kyu;Choi, Hyun-Sug
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.27 no.3
    • /
    • pp.15-25
    • /
    • 2019
  • The study was conducted to compare the chemical properties and microbial activity of soil and the crop productivity by applying homemade liquid fertilizers (LF) used in leading cucumber farms as well as to evaluate the eco-friendly LFs to substitute for a chemical fertilizer. Three homemade LFs, EM, starfish, and native microbes, and a chemical LF were regularly fertigated per three days during the growing season. Chemical LF contained the highest pH, EC (electrical conductivity), and concentrations of T-N, $P_2O_5$, K, Ca, and Mg, while the lowest EC level was observed for EM LF. Soil EC was the highest to the 3.0 dS/m for chemical LF-plots, with lowering soil pH, OM (organic matter), and Mg concentration. Soil chemical properties mostly increased in native microbes LF-plots. However, soil microbial properties were not significantly different among the LF treatment plots. OTU (operational taxonomic units), richness estimator, and diversity index of bacteria and fungi increased in the chemical LF and EM LF based on the pyrosequencing analysis. SPAD and PS II values on the treated-cucumber leaves were seasonally decreased from 32 to 60 days after transplanting, with the rapid decline observed at 45 days after transplanting. Number of leaves and crop height increased in the treatments with EM and native microbes LF. LF treated-cucumber crops were not significantly different for total fresh weight and fruit yield.

Changes in Growth, Active Ingredients, and Rheological Properties of Greenhouse-cultivated Ginseng Sprout during its Growth Period (하우스에서 재배된 새싹인삼의 재배시기별 생육, 유효성분 및 물성의 변화)

  • Seong, Bong Jae;Kim, Sun Ick;Jee, Moo Geun;Lee, Hee Chul;Kwon, A Reum;Kim, Hyun Ho;Won, Jun Yeon;Lee, Ka Soon
    • Korean Journal of Medicinal Crop Science
    • /
    • v.27 no.2
    • /
    • pp.126-135
    • /
    • 2019
  • Background: The ginseng ginsenosides, which have various physiological activities, are known to be more abundant in the leaves than in the roots, and the consumers' interest in ginseng sprout as a functional vegetable has been increasing. Methods and Results: The aim of this study was to investigate the effects of growth period on growth properties, active ingredients and rheology of ginseng sprouts cultivated in a non-heated greenhouse equipped with a shade net for 60 days, starting from the end of May to the middle of July. The chlorophyll content of the leaves decreased, but their length and width increased with increasing cultivation days. In particular, growth increased significantly until 40 days, but only slightly after 50 days. The stem length did not increase greatly from the 20 th to the 30 th day of cultivation, but increased significantly from the 30 th to the 40 th day, and then further increased gradually. The weight of the leaves, stems, and roots increased slightly, but not change significantly. After 40 days of cultivation, the total ginsenoside content increased by 1.07 times in the leaves and decreased by 0.80 times in the roots with increasing cultivation days. The leaf contents of ginsenosides $Rg_1$, Re, $Rb_1$, Rc, $F_3$ and $F_4$ increased with increasing cultivation days. The rheological properties of ginseng sprout showed the greatest influence on stem hardening with increasing cultivation days. Conclusions: Therefore, based on the growth characteristics, active ingredients and physical properties, 40 days after sowing was considered to be an appropriate harvesting time for ginseng sprouts.

Effect of LED Irradiation on Growth Characteristids of Ginseng Cultivated in Plastic Film House

  • Seo, Sang Young;Cho, Jong hyeon;Kim, Chang Su;Kim, Hyo Jin;Kim, Dong Won;An, Min Sil;Yoon, Du Hyeon
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2019.10a
    • /
    • pp.45-45
    • /
    • 2019
  • This experiment was carried out using artificial clay and LED in the plastic film house (irradiation time: 08:00~18:00/day). Seedlings (n = 63 per $3.3m^2$) of ginseng was planted on May 17, 2018. LED was combined with red and blue light in a 3:1 ratio and irradiated with different light intensity. The average air temperature from April to September was $12.3^{\circ}C$ $-26.0^{\circ}C$ and it was the the highest at $26.0^{\circ}C$ in August. The test area where fluorescent lamp was irradiated tended to be somewhat higher than the LED irradiation area. The chemical properties of the test soil are as follows. pH levels was 5.3~5.5, EC levels 0.45~0.52 dS/m and OM levels 33~37%. The total nitrogen content was 0.35~0.47% and the available $P_2O_5$ contents was 13.7~16.0 mg/kg, which was lower than the suitable level of 70~200 mg/kg. Exchangeable cations K and Mg contents were within acceptable ranges, but the Ca contents was $28{\sim}38cmol^+/kg$ levels higher than the permissible level ($2{\sim}6cmol^+/kg$). Germination of ginseng leaves took 8~9 days and the overall germination rate was 70~75%. The photometric characteristics of LED light intensity are as follows. The greater the light intensity, the higher the PAR (Photosynthetic Action Radiation) value, illuminance and solar irradiation. Photosynthetic rate was also increased with higher light intensity was investigated at $1.7{\sim}3.2{\mu}mol\;CO_2/m^2/s$. Leaf temperature ($23.7{\sim}24.8^{\circ}C$) by light intensity was the same trend. The growth of aerial parts (plant height etc.) were generally excellent when irradiated with 3 times the light intensity, the growth of the ginseng aerial parts were excellent as follows. The plant height was 42.6 cm, stem length was 25.2 cm, leaf length was 9.6 cm and stem diameter was 5.0 mm. The growth of underground part (root length etc.) was the same, and the root length was 24.4 cm, the tap root length was 6.0 cm, diameter of taproot was 18.2 mm and the fresh root weight was 17.2 g. There were no disease incidence such as Alternaria blight, Gray mold and Anthracnose. Disease of Damping off occurred 2.2~3.6% and incidence ratio of rusty root ginseng was 14.6~20.7%. Leaf discoloration rate was 13.7~48.9% and increased with increasing light intensity. Ginsenoside content of ginseng by light intensity is under analysis.

  • PDF

Effect of Soluble-silicate or Chitosan Foliar Spray on Ginseng Cultivated in Blue-white Plastic Film House

  • Seo, Sang Young;Cho, Jong hyeon;Kim, Chang Su;Kim, Hyo Jin;Kim, Dong Won;An, Min Sil;Jang, In Bae
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2019.10a
    • /
    • pp.46-46
    • /
    • 2019
  • The experiments were performed in the Jinan (elevation: 300 meters above sea level), Jeollabuk-do. Seedlings (n = 63 per $3.3m^2$) of ginseng cultivar (Cheonpung, Yeonpung) were planted on April 10, 2015. Shading material of plastic film house was blue-white film. Before the Planting seedling, silicate (3 kg/10 a) or chitosan (40 kg/10 a) was fertilized and foliar sprayed on the leaves 1000 times dilution solution once a month from May to September every year. The growth results of 5-year old ginseng surveyed in 2018 are as follows. The average air temperature in the plastic film house was the highest at $26.6^{\circ}C$ and $26.5^{\circ}C$ in July and August, respectively, and the highest temperature was $40.5^{\circ}C$ in July. The maximum daily temperature of $35^{\circ}C$ or more was 30 days, with the average soil temperature being $24.9^{\circ}C$ in August. The chemical properties of the test soil are as follows. pH was 6.4~6.9 level and EC was 0.35~0.46 dS/m. The organic matter content was 33.5~41.4 g/kg, and available-P content was 251.9~306.8 mg/kg. Exchangeable cations contents, such as K, Ca and Mg were all the appropriate ranges. The soil microbial density surveyed by the dilution plate method was 10~50 times higher than that of control (Non-treatment) and actinomycete density was 3~6 times higher. Pathogens of the genus Fusarium by Metagenome analysis decreased 91.3% and 68.2% respectively in the foliar sprayed of chitosan and soluble-silicate. The light intensity (PAR) in the blue-white film plastic film house gradually increased until July and then decereased, with the average of light intensity in March-October was $120.3umol/m^2/s$. The growth of aerial parts such as plant height and stem length was better than non-sprayed group in silicate or chitosan treatments and Yeonpung cultivar was superior to the Cheonpung cultivar. The SPAD value was higher in Yeonpung cultivar foliar sprayed with soluble-silicate. The growth of underground parts such as root length and taproot length were better in chitosan and soluble-silicate treatment than control, especially in Yeonpung cultivar foliar sprayed with chitosan was good in taproot length and taproot diameter, and fresh weight of root was 60.1 g. Ginsenoside contents were 24.9 mg/g and 22.4 mg/g, in the Cheonpung cultivar foliar sprayed with soluble-silicate or chitosan respectively, 28% and 15% higher than control (19.5 mg/g). The incidence of disease by Alteraria panax and Botrytis cinerea was 3~9% and 4~9%, respectively. High temperature damage rate was 3~5%.

  • PDF

Study of Paprika Growth Characteristic on Covering Selective Light Transmitting Filter in Greenhouse (선택적 광 투과에 따른 파프리카 생육특성 연구)

  • Kang, D.H.;Kim, D.E.;Lee, J.W.;Hong, S.J.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.23 no.1
    • /
    • pp.59-66
    • /
    • 2021
  • This study aimed to a basic research for the development of dye-sensitized solar cells that the wavelength band required for crop growth is passed, and the wavelength band that is not necessary for crop growth can be used for the generation of electricity. The transmissivity according to the illuminance was about 10% higher in the Blue filter and the Green filter than in the Red filter, but the transmissivity according to the PPFD was about 10% higher in the Red filter and the Blue filter than in the Green filter. In addition, the greenhouse attached with 30% infrared blocking filter was predicted to have a lower air temperature than other greenhouses, but it was investigated that there was no significant difference. Therefore, it was investigated that the application of the infrared cut filter would not be appropriate in a greenhouse that controls the temperature by opening a window. As a result of investigating, it was found that the Green and Blue filter greenhouses had the severe overgrowth and the stems grew weaker. The fresh weight of paprika in the infrared blocking filter greenhouse was the highest at 678.9g, and the growth of Red filter and the control greenhouses was relatively poor. Photosynthetic rate, amount of transpiration, and stomatal conductivity were the infrared blocking filter and control greenhouse higher than others. On the other hand, the water use efficiency did not show a big difference.

Characteristics of Lentinula edodesCultivar 'Heunghwa 1ho' Newly Bred for Log Cultivation (표고(Lentinula edodes) 원목재배용 신품종 '흥화1호' 육성 및 재배 특성)

  • Jang, Eun-Kyoung;Je, Seon-Jeong;Jang, Hye-Mi;Ban, Seung-Eon
    • Journal of Mushroom
    • /
    • v.20 no.3
    • /
    • pp.147-152
    • /
    • 2022
  • To develop mushroom varieties for cultivating at low temperature on oak logs, a strain with a low fruiting body generation temperature was crossed with Di-mon to select for a line with excellent properties. Selection was followed by cultivation testing. From these studies, Heunghwa 1ho was identified. The optimum temperature for cultivating Heunghwa 1ho, was 13.3℃. The fruiting temperature range was 6.4~20.2℃, identical to that of the parent strain. Growth at 25℃ for 7 days achieved optimal mycelial growth of 61.9±2.10 mm, superior to growth of the parent strain at this temperature. The cap shape of Heunghwa 1ho was convex, cap diameter was 57.8±8.31 mm, and cap color was brown. Heunghwa 1ho showed similar genetic traits to those of the parental strain. However, dry weight (20.1 kg/m3) and cap diameter and color are superior to those of the parent strain. The 3 year fresh oak mushroom yield was 113.8 kg/m3, superior to the respective yields of the parent strains JMI 10047 and JMI 90021 (92.5 kg/m3 and 66.4 kg/m3).