• Title/Summary/Keyword: Fresh Ginseng

Search Result 384, Processing Time 0.027 seconds

Effect of Physical Properties of Soil on Ginseng Seedling Growth in Nursery Bed (양식묘단 토양의 물리성이 묘삼생육 및 수량에 미치는 영향)

  • 이종철;변정수
    • Journal of Ginseng Research
    • /
    • v.19 no.3
    • /
    • pp.287-290
    • /
    • 1995
  • This study was conducted to elucidate the effect of physical properties of soil in nursery bed with different densities on growth of ginseng seedling. Stem length, leaf length and leaf width of ginseng seedling showed the decreasing tendency with increasing the hardness of the nursery soil. Fresh root weight per seedling and number of available seedlings were increased significantly with decrease of the soil hardness. For solid, liquid phases, bulk density and hardness of soil, negative correlations were shown in stem length, leaf length, leaf width, root weight per seeding, and number t of available seedlings. On the other hand, gas phase, air permeability and porosity of soil had positive correlations with stem length, leaf length, leaf width, root weight per seedling and number of available seedlings. Key words Yang-Jik nursery, ginseng seedling, soil physical properties.

  • PDF

Three Hydroxylated Ginsenosides from Heat Treatmented Ginseng (인삼의 열처리 과정 중 생성되는 3종의 수산화진세노사이드에 대한 연구)

  • Lee, Sang Myung
    • Korean Journal of Pharmacognosy
    • /
    • v.51 no.4
    • /
    • pp.255-263
    • /
    • 2020
  • Ginsenosides are considered to be the most important ingredients in ginseng. They are chemically converted by endogenous organic acids contained in ginseng and the heat applied during red ginseng processing. During this procedure, various converted ginsenosides are produced through hydrolysis of substitute sugars of ginsenosides and forming double bonds through dehydration in the dammarane skeleton. In order to study the conversion mechanism of protopanaxadiol-type ginsenosides during the heat treatment process of ginseng, we purified the three final converted ginsenosides by heating fresh ginseng for a long time. The three isolated ginsenosides were identified as 25(OH)-ginsenoside Rg5, 25(OH)-ginsenoside Rz1 and 25(OH)-ginsenoside Rg3 through NMR spectrum analysis. As a result of quantification of ginseng heated at 100 ℃ for 0 to 6 days by HPLC/UV and TLC methods, the content of 25(OH)-ginsenosides tended to increase in proportion to the time exposed to heat. In particular, the content of 25(OH)-ginsenosid Rg5 was confirmed to be noticeably increased.

Inactivation of Agrobacterium tumefaciens Inoculated on Fresh Radix Ginseng by Electron Beam Irradiation and Aqueous Chlorine Dioxide Treatment

  • Chun, Ho-Hyun;Kim, Ju-Yeon;Song, Kyung-Bin
    • Journal of Applied Biological Chemistry
    • /
    • v.51 no.3
    • /
    • pp.117-122
    • /
    • 2008
  • Inactivation of Agrobacterium tumefaciens was evaluated on the inoculated fresh Radix Ginseng by electron beam irradiation or aqueous chlorine dioxide ($ClO_2$) treatment. Two groups of fresh ginsengs were prepared and inoculated with A. tumefaciens. One group was then irradiated at 0, 2, and 4 kGy using an electron beam accelerator, and the other group was treated with 0, 50, and 100 ppm of aqueous $ClO_2$. Microbiological data indicated that populations of A. tumefaciens significantly decreased with increasing irradiation dose or aqueous $ClO_2$ concentration. In particular, A. tumefaciens was eliminated by irradiation at 4 kGy, and 100 ppm $ClO_2$ treatment reduced the populations of A. tumefaciens by 1.44 log CFU/g. These results suggest that electron beam irradiation or aqueous $ClO_2$ treatment can be useful in improving the microbial safety of fresh ginsengs during storage.

A Study oil Preferences for Ginseng in Korean ll. The college student's viewpoint (한국인의 인삼기호도 조사연구 제 2보. 대학생 중심)

  • 성현순;양재원
    • Journal of Ginseng Research
    • /
    • v.13 no.1
    • /
    • pp.130-135
    • /
    • 1989
  • The purpose of the present study was to find the preferences of college students and to understand trends in their consumption patterns. This survey was conducted using a questionnaire containing 50 questions answered by 614 sudients of 4 universities in Daejeon and Seoul and the following result were obtained . 1. The majority of students favored coffee, yulmy tea, ginseng tea, and lllack tea in decreasing order. Only 49.0% of the students believe that ginseng was beneficial to the human life as a health, fond . 2. 54% of the students had experience in taking fresh ginseng and 68% had used in white ginseng. 3. Their expectations for the efficacy of ginseng were as remedies for hang-over syndrom, high blood pressure, heart trouble, liver trouble, and gastronic trouble, in decreasing order. 4. Most of the students took soup made by adding ginseng to chicken broth (SamGyetang) when taken ginseng. 5. The percent of students who had taken coffee was 97.7%, whereas only 48.3% had used processed ginseng products. The female students especially disliked ginseng tea. 6. The preferences of the students indicate that the likelihood that they will be major consumers of ginseng in the future is very low.

  • PDF

Analysis of Good Agricultural Practices (GAP) in Panax ginseng C.A. Mayer (인삼의 GAP (우수농산물인증) 관련요소 분석)

  • Yu, Yong-Man;Oh, She-Chan;Sung, Bong-Jae;Kim, Hyun-Ho;Youn, Young-Nam
    • Korean Journal of Medicinal Crop Science
    • /
    • v.15 no.3
    • /
    • pp.220-226
    • /
    • 2007
  • For the analysis of hazard factors and the development of GAP (Good Agricultural Practices) Ginseng, 10 ginseng cultural farms wished certified GAP were selected at Geumsan-gun area, a representative site of ginseng cultivation in Korea. In order to verify the safety of GAP ginseng, possible contamination of pesticide and heavy metal residues, and microbial hazard were analyzed. Soil and water around ginseng cultivation field, and ginseng were investigated. Eighty-one pesticides including carbendazim were used as typical pesticide against plant pathogens and insect pests of ginseng plant and general crops. There was no excess the maximum residue limit (MRL) in residue figure of the soil. Including the residue figure of the arsenic (0.81 ml/kg) and 7 other heavy metals was also suitable to cultivate the ginseng plant. The irrigation water and dilution water for pesticide application were also safety level for GAP. Fresh ginsengs from the farms were sampled and investigated pesticide residues and contaminations of bacteria. Among 23 pesticides tested, we didn't detect any kinds of pesticide residues, but tolclofos-methyl was frequently found in the other ginseng field. On the investigation of microorganism hazards, 2 gram negative bacteria and 1 gram positive bacterium were found in the fresh ginseng. Number of total bacteria was $1.5{\times}10^3$ cfu/ml, which was less than the other agriculture products. At these results, 10 selected ginseng farms were good cultural places for GAP ginseng production and the ginseng cultured from Geumsan-gun area were a good safe far human.

Adventitious Root Development and Ginsenoside Production in Panax ginseng, Panax quinquefolium and Panax japonicum

  • Han, Jung-Yeon;Kwon, Yong-Soo;Choi, Yong-Eui
    • Journal of Plant Biotechnology
    • /
    • v.33 no.2
    • /
    • pp.147-152
    • /
    • 2006
  • This work was carried out to establish adventitious root culture system in three Panax species (wild-grown P. ginseng, P. quinquefolium, and P. japonicum) to analyze their ginsenoside productivity. Adventitious roots were induced directly from segments of seedlings after cultured on MS(Murashige andSkoog 1962) solid medium containing 3.0 mg/l IBA. Omission of $NH_4NO_3$ from the medium greatly enhanced both the frequency of adventitious root formation and number of roots per explants in all the three Panax species. However, elongation of post-induced adventitious roots was enhanced on medium with $NH_4NO_3$. Two-step culture protocol: $NH_4NO_3$-free medium for first two weeks of culture, followed by $NH_4NO_3$ containing medium for further 4 weeks, greatly enhanced the fresh weight increase of adventitious roots in all the three ginseng species. The fresh weight of adventitious roots was high in P. quinquefolium and low in P. ginseng, followed by P. japonioum regardless of the composition of medium. Pattern and content of ginsenosides in adventitious roots differed among the three Panax species. Total ginsenoside content of adventitious roots in P. quinquefolium, P. ginseng, and p. japonicum was 8.03, 15.7 and 1.2 mg/g dry weight, respectively. Among the three speices, adventitious roots in P. quinquefolium produced hig-hamount of ginsenosides. The pattern of ginsenoside fractions between P. ginseng and P. quinquefolium was similar but the amount of ginsenoside differed between the two, While, in P japonicum, total ginsenoside content was very low and some ginsenosides such as ginsenoside Rb2 and Rf were not detected. Conclusively, we demonstrate that same culture condition was required for induction and elongation of adventitious roots of three ginseng species but growth of adventitious roots and their ginsenoside production were different among them.

Analysis of the essential oil composition of fresh Panax ginseng root and identification of novel phenylalkenal compounds

  • Dae-Woon Kim;Young-Hoi Kim;Tae-Young Kim;Han-Suk Choi;Myung-Kon Kim
    • Food Science and Preservation
    • /
    • v.30 no.6
    • /
    • pp.944-959
    • /
    • 2023
  • This study investigated the essential oil composition of fresh Panax ginseng root and identified novel compounds from ginseng oil. The oil was divided into five fractions (neutral, basic, phenolic, acidic, and aldehydic). In total, 149 constituents, including 29, 19, and 38 compounds in the basic, phenolic, and aldehydic fractions, respectively, were identified by gas chromatography (GC) and GC-mass spectrometry (MS). The primary constituents of the total ginseng volatile oil were α-humulene (13.91% as a peak area), bicyclogermacrene (13.59%), β-caryophyllene (8.24%), α-neoclovene (7.78%), and α- and β-panasinsenes (5.14% and 7.53%). The primary constituents of the basic fraction were 2-isopropyl-3-methoxypyrazine (35.51%), 3-sec-butyl-2-methoxy-5-methylpyrazine (31.54%), 2-isobutyl-3-methoxypyrazine (8.64%), and 2-methoxy-3-methylpyrazine (8.40%), whereas in the phenolic fraction, these were benzoic (25.40%), octanoic (11.57%), nonanoic (9.16%), propionic (6.35%), and decanoic acids (6.16%). The primary constituents of the aldehydic fraction were 4-(2-furyl)-3-buten-2-one (23.41%), benzaldehyde (10.18%), cis-2-heptanal (9.42%), 3-(α-furyl)-propenal (8.51%), and 2-phenyl-2-butenal (7.28%). Among these, the phenylalkenal compounds, including 2-phenyl-2-butenal, 2-methyl-3-phenyl-2-propenal, 5-methyl-2-phenyl-2-pentenal, 5-methyl-2-phenyl-2-hexenals, 2-phenyl-2-octenal, and 2-phenyl-2-nonenal, were newly identified in this study as ginseng volatile constituents. Furthermore, 2-phenyl-2-nonenal was identified as a plant-based volatile constituent for the first time in this study.

In Vitro and In Vivo Antioxidant Activity of Aged Ginseng (Panax ginseng)

  • Chung, Soo Im;Kang, Mi Young;Lee, Sang Chul
    • Preventive Nutrition and Food Science
    • /
    • v.21 no.1
    • /
    • pp.24-30
    • /
    • 2016
  • Fresh ginseng roots were aged in an oven at $80^{\circ}C$ for 14 d. The in vitro and in vivo antioxidant activities of this aged ginseng, in comparison with those of the white and red ginsengs, were evaluated. In in vitro antioxidant assays, the ethanolic extracts from aged ginseng showed significantly higher free radical scavenging activity and reducing power than those of the white and red ginsengs. In in vivo antioxidant assays, mice were fed a high fat diet supplemented with white, red, or aged ginseng powders. High fat feeding resulted in a significant increase in lipid peroxidation and a substantial decrease in antioxidant enzymes activities in the animals. However, diet supplementation of ginseng powders, particularly aged ginseng, markedly reduced lipid peroxidation and enhanced the antioxidant enzymes activities. The results illustrate that the aged ginseng has greater in vitro and in vivo antioxidant capacity than the white and red ginsengs. The aged ginseng also showed considerably higher total saponin, phenolic, and flavonoid contents, indicating that its antioxidant capacity may have been partly due to its high levels of antioxidant compounds. This new ginseng product may be useful as a functional food with strong antioxidant potential.