• 제목/요약/키워드: Frequent Structure

검색결과 433건 처리시간 0.024초

트랜잭션 연결 구조를 이용한 빈발 Closed 항목집합 마이닝 알고리즘 (An Efficient Algorithm for Mining Frequent Closed Itemsets Using Transaction Link Structure)

  • 한경록;김재련
    • 대한산업공학회지
    • /
    • 제32권3호
    • /
    • pp.242-252
    • /
    • 2006
  • Data mining is the exploration and analysis of huge amounts of data to discover meaningful patterns. One of the most important data mining problems is association rule mining. Recent studies of mining association rules have proposed a closure mechanism. It is no longer necessary to mine the set of all of the frequent itemsets and their association rules. Rather, it is sufficient to mine the frequent closed itemsets and their corresponding rules. In the past, a number of algorithms for mining frequent closed itemsets have been based on items. In this paper, we use the transaction itself for mining frequent closed itemsets. An efficient algorithm is proposed that is based on a link structure between transactions. Our experimental results show that our algorithm is faster than previously proposed methods. Furthermore, our approach is significantly more efficient for dense databases.

Multi-Sized cumulative Summary Structure Driven Light Weight in Frequent Closed Itemset Mining to Increase High Utility

  • Siva S;Shilpa Chaudhari
    • Journal of information and communication convergence engineering
    • /
    • 제21권2호
    • /
    • pp.117-129
    • /
    • 2023
  • High-utility itemset mining (HIUM) has emerged as a key data-mining paradigm for object-of-interest identification and recommendation systems that serve as frequent itemset identification tools, product or service recommendation systems, etc. Recently, it has gained widespread attention owing to its increasing role in business intelligence, top-N recommendation, and other enterprise solutions. Despite the increasing significance and the inability to provide swift and more accurate predictions, most at-hand solutions, including frequent itemset mining, HUIM, and high average- and fast high-utility itemset mining, are limited to coping with real-time enterprise demands. Moreover, complex computations and high memory exhaustion limit their scalability as enterprise solutions. To address these limitations, this study proposes a model to extract high-utility frequent closed itemsets based on an improved cumulative summary list structure (CSLFC-HUIM) to reduce an optimal set of candidate items in the search space. Moreover, it employs the lift score as the minimum threshold, called the cumulative utility threshold, to prune the search space optimal set of itemsets in a nested-list structure that improves computational time, costs, and memory exhaustion. Simulations over different datasets revealed that the proposed CSLFC-HUIM model outperforms other existing methods, such as closed- and frequent closed-HUIM variants, in terms of execution time and memory consumption, making it suitable for different mined items and allied intelligence of business goals.

그래프마이닝을 활용한 빈발 패턴 탐색에 관한 연구 (A Methodology for Searching Frequent Pattern Using Graph-Mining Technique)

  • 홍준석
    • Journal of Information Technology Applications and Management
    • /
    • 제26권1호
    • /
    • pp.65-75
    • /
    • 2019
  • As the use of semantic web based on XML increases in the field of data management, a lot of studies to extract useful information from the data stored in ontology have been tried based on association rule mining. Ontology data is advantageous in that data can be freely expressed because it has a flexible and scalable structure unlike a conventional database having a predefined structure. On the contrary, it is difficult to find frequent patterns in a uniformized analysis method. The goal of this study is to provide a basis for extracting useful knowledge from ontology by searching for frequently occurring subgraph patterns by applying transaction-based graph mining techniques to ontology schema graph data and instance graph data constituting ontology. In order to overcome the structural limitations of the existing ontology mining, the frequent pattern search methodology in this study uses the methodology used in graph mining to apply the frequent pattern in the graph data structure to the ontology by applying iterative node chunking method. Our suggested methodology will play an important role in knowledge extraction.

대용량 공간 데이터로 부터 빈발 패턴 마이닝 (Mining Frequent Pattern from Large Spatial Data)

  • 이동규;이경민;정석호;이성호;류근호
    • 한국공간정보시스템학회 논문지
    • /
    • 제12권1호
    • /
    • pp.49-56
    • /
    • 2010
  • 공간 및 비 공간 데이터에서 알지 못했던 패턴을 탐사하는 빈발 패턴 탐사 기법은 마이닝 분야에서 가장 핵심적인 부분으로 많은 연구가 활발히 진행되고 있다. 기존의 자료구조들은 트리 구조 및 배열 구조로써 밀집 또는 희소 빈발 패턴에서 성능 저하를 보인다. 대용량의 공간 데이터는 밀집 및 희소 빈발 패턴을 둘 다 가지므로 단일 알고리즘으로 빠르게 탐사 하는 것은 중요하다. 본 논문에서는 단일 알고리즘을 사용하면서도 밀집 및 희소 빈발 패턴 모두에 대해 빠르게 빈발 패턴을 마이닝할 수 있는 압축된 패트리샤 빈발 패턴 트리라는 새로운 자료구조와 이를 사용한 빈발 패턴 마이닝 알고리즘을 제안한다. 실험 평가는 제안한 알고리즘이 대용량 희소 및 밀집 빈발 데이터에서 기존의 FP-Growth 알고리즘 보다 약 10배 정도 빠르게 빈발 패턴을 탐사하는 것을 보인다.

TID 리스트 테이블을 이용한 연관 규칙 탐사 (Association Rule Discovery using TID List Table)

  • 채덕진;황부현
    • 한국정보과학회논문지:데이타베이스
    • /
    • 제32권3호
    • /
    • pp.219-227
    • /
    • 2005
  • 본 논문에서는 데이타베이스를 단 한번 스캔하여 빈발 항목집합들을 생성할 수 있는 효율적인 알고리즘을 제안한다. 빈발 항목집합은 어떤 트랜잭션이 접근하는 항목 집합의 부분집합이다. 각 항목에 대하여 그 항목을 접근하는 트랜잭션들에 관한 정보를 가지고 있다면, 동일한 트랜잭션 식별자를 갖는 항목들만을 추출함으로써 빈발 항목집합들을 생성할 수 있다 본 논문에서 제안하는 방법은 한 번의 데이타베이스 스캔으로 각 항목마다 접근하는 트랜잭션 식별자를 저장할 수 있는 자료 구조를 생성하며, 동시에 해쉬 기법을 이용하여 2-빈발 항목집합들을 생성한다. 3-빈발 항목집합부터는 이 자료 구조와 각 항목에 대한 트랜잭션 식별자를 비교함으로써 간단히 빈발 항목집합들을 찾아낼 수 있다. 제안하는 알고리즘은 한 번의 데이타베이스 스캔만으로 빈발 항목집합들을 효율적으로 생성할 수 있다.

LSI 유사도를 이용한 효율적인 빈발항목 탐색 알고리즘 (Frequent Itemset Search Using LSI Similarity)

  • 고윤희;김현철;이원규
    • 컴퓨터교육학회논문지
    • /
    • 제6권1호
    • /
    • pp.1-8
    • /
    • 2003
  • 본 논문에서는 frequent itemset을 빠르게 발견해내기 위한 효율적인 vertical 마이닝 알고리즘을 제안한다. 본 알고리즘은 frequent itemset을 구하기 위해 아이템들을 Least Support Itemset(LSI) 과의 유사도에 의해 올림차순으로 정렬하여 탐색 트리를 구축하여 보다 빠르고 효율적으로 frequent itemset을 찾아낸다. 또한, 트리를 탐색 시, 2가지의 휴리스틱 방법을 사용하여 탐색의 초기에 많은 후보 아이템들을 탐색 트리로부터 제거함으로써 탐색 공간을 크게 줄인다. 본 논문에서 제안하는 알고리즘은 이전의 알고리즘들과 비교해, long pattern을 가지는 데이터 베이스에서 보다 빠르게 frequent itemset을 발견해 냄을 실험을 통해 발견하였다.

  • PDF

Mining Frequent Itemsets with Normalized Weight in Continuous Data Streams

  • Kim, Young-Hee;Kim, Won-Young;Kim, Ung-Mo
    • Journal of Information Processing Systems
    • /
    • 제6권1호
    • /
    • pp.79-90
    • /
    • 2010
  • A data stream is a massive unbounded sequence of data elements continuously generated at a rapid rate. The continuous characteristic of streaming data necessitates the use of algorithms that require only one scan over the stream for knowledge discovery. Data mining over data streams should support the flexible trade-off between processing time and mining accuracy. In many application areas, mining frequent itemsets has been suggested to find important frequent itemsets by considering the weight of itemsets. In this paper, we present an efficient algorithm WSFI (Weighted Support Frequent Itemsets)-Mine with normalized weight over data streams. Moreover, we propose a novel tree structure, called the Weighted Support FP-Tree (WSFP-Tree), that stores compressed crucial information about frequent itemsets. Empirical results show that our algorithm outperforms comparative algorithms under the windowed streaming model.

Elasto-plastic time history analysis of an asymmetrical twin-tower rigid-connected structure

  • Wu, Xiaohan;Sun, Yanfei;Rui, Mingzhuo;Yan, Min;Li, Lishu;Liu, Dongze
    • Computers and Concrete
    • /
    • 제12권2호
    • /
    • pp.211-228
    • /
    • 2013
  • The structure analyzed in this paper has particular building style and special structural system. It is a rigid-connected twin-tower skyscraper with asymmetrical distribution of stiffness and masses in two towers. Because of the different stiffness between the north and the south towers, the torsion seismic vibration is significant. In this paper, in order to study the seismic response of the structure under both frequent low-intensity earthquakes as well as rare earthquakes at the levels of intensity 7, the analysis model is built and analyzed with NosaCAD. NosaCAD is an nonlinear structure analysis software based on second-development of AutoCAD with ObjectARX. It has convenient modeling function, high computational efficiency and diversity post-processing functions. The deformations, forces and damages of the structure are investigated based on the analysis. According to the analysis, there is no damage on the structure under frequent earthquakes, and the structure has sufficient capacity and ductility to resist rare earthquakes. Therefore the structure can reach the goal of no damage under frequent earthquakes and no collapse under rare earthquakes. The deformation of the structure is below the limit in Chinese code. The time sequence and distribution of damages on tubes are reasonable, which can dissipate some dynamic energy. At last, according to forces, load-carrying capacity and damage of elements, there are some suggestions on increasing the reinforcement in the core tube at base and in stiffened stories.

점진적인 웹 마이닝을 위한 효율적인 후보패턴 저장 트리구조 및 알고리즘 (An Efficient Candidate Pattern Storage Tree Structure and Algorithm for Incremental Web Mining)

  • 강희성;박병준
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.3-5
    • /
    • 2006
  • Recent advances in the internet infrastructure have resulted in a large number of huge Web sites and portals worldwide. These Web sites are being visited by various types of users in many different ways. Among all the web page access sequences from different users, some of them occur so frequently that may need an attention from those who are interested. We call them frequent access patterns and access sequences that can be frequent the candidate patterns. Since these candidate patterns play an important role in the incremental Web mining, it is important to efficiently generate, add, delete, and search for them. This thesis presents a novel tree structure that can efficiently store the candidate patterns and a related set of algorithms for generating the tree structure adding new patterns, deleting unnecessary patterns, and searching for the needed ones. The proposed tree structure has a kind of the 3 dimensional link structure and its nodes are layered.

  • PDF

능동적 슬라이딩 윈도우 기반 빈발구조 탐색 기법 (A Method of Frequent Structure Detection Based on Active Sliding Window)

  • 황정희
    • 디지털콘텐츠학회 논문지
    • /
    • 제13권1호
    • /
    • pp.21-29
    • /
    • 2012
  • 최근 인터넷의 급격한 발전과 유비쿼터스 컴퓨팅 환경 그리고 센서 네트워크와 같은 많은 정보들의 교환이 이루어지는 환경에서 연속적으로 전송되는 데이터에 대한 처리가 요구되고 있다. 이와 관련하여 XML 스트림 데이터에 대한 빈발구조 추출 및 효율적인 질의처리를 위한 마이닝 방법들이 연구되고 있다. 본 논문에서는 연속적으로 빠르게 발생하는 스트림 데이터로부터 유용한 정보를 발견하기 위한 기반 연구로써 트리거를 이용한 슬라이딩 윈도우 기반의 XML 빈발구조 탐색 방법을 제안한다. 제안된 방법은 스트림 데이터에 대한 마이닝과 연속질의 처리등을 위해 트리거를 이용하여 데이터의 흐름을 자동으로 제어할 수 있는 기반이 된다.