• Title/Summary/Keyword: Frequency-tunable

Search Result 235, Processing Time 0.02 seconds

Numerical Approach for Frequency-Shifting Analysis of Electrostatic Micro-Mechanial Actuator (정전기력을 이용한 미소기전 구동기의 고유치 변화 해석에 관한 연구)

  • Lee, Wan-Sul;Kwon, Kie-Chan;Kim, Bong-Kyu;Cho, Ji-Hyon;Youn, Sung-Kie
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.854-859
    • /
    • 2001
  • An eigenvalue analysis of a tunable micro-mechanical actuator is presented. The actuator is modeled as a continuum structure. The eigenvalue modified by the tuning voltage is computed through the linearization of the relation between the electrostatic force and the displacement at the equilibrium. A staggered algorithm is employed to perform the coupled analysis of the electrostatic and elastic fields. The stiffness matrix of the actuator is modified at this equilibrium state. The displacement field is perturbed using an eigenmode profile of the actuator. The configuration change of the actuator due to perturbation modifies the electrostatic field and thus the electrostatic force. The equivalent stiffness matrix corresponding to the perturbation and the change in the electrostatic force is then added to stiffness matrix in order to explain natural frequency shifting. The numerical examples are presented and compared with the experiments in the literatures.

  • PDF

Design of RF Supporting Unit for COMS RF Compatibility Test (COMS RF호환성 시험을 위한 RF지원 장비의 설계 및 제작)

  • Park, Durk-Jong;Park, Chun-Woo;Ahn, Sang-Il
    • Aerospace Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.176-186
    • /
    • 2008
  • As determined single coaxial cable for the interface between satellite and ground station in COMS RF compatibility test, RF supporting unit was required to allow signals in different frequency-band to be exchanged in the single coaxial cable. In addition, the path loss between satellite and ground station in normal operation should be simulated through two RF supporting units connected to the ends of single coaxial cable. As an effort to design RF supporting unit, level diagram was firstly conducted on the basis of measured data for each element. From the level diagram, it was found that single coaxial cable connected with two RF supporting units properly represented the path loss between satellite and ground station After RF supporting unit was integrated on aluminum plate, it was tested that input signal level at each test cap linked with MODCS and TC&R was tunable within the required dynamic range. RF supporting unit, now completely integrated, will be applied in the upcoming COMS RF compatibility test.

  • PDF

Tunable Properties of Ferroelectric Thick Films With MgO Added on (BaSr)TiO3

  • Kim, In-Sung;Song, Jae-Sung;Jeong, Soon-Jong;Jeon, So-Hyun;Chung, Jun-Ki;Kim, Won-Jeong
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.3
    • /
    • pp.391-395
    • /
    • 2007
  • MgO enhanced $(Ba_{0.6}Sr_{0.4})$ $TiO_3$ thick films have been fabricated by a tape casting and firing method for tunable devices on the microwave frequency band. In order to improve ferroelectric properties, the composite thick films enhanced with MgO on BST have been asymmetrically annealed by a focused halogen beam method. Dielectric constants of composite thick films are changed from 1050 to 1300 at 100 kHz after 60 s and 150 s annealing by the focused halogen beam. Even though no prominent changes were previously observed from the thick films before and after annealing in terms of chemical composition and surface morphology, it is clear that the average particle size of the thick films calculated by Scherrer's formula were increased by annealing. Furthermore, a strong correlation between particle size and dielectric constant of the composite thick films has been observed; dielectric constant increases with increased particle size. This has been attributed to the increased volume of ferroelectric domain due to increased particle sizes. As a result, the tuning range was improved by halogen beam annealing.

Design of CFD Structured Microstrip Line Bandpass Filter (CFD 구조의 마이크로스트립 라인 가변 대역통과필터 설계)

  • Yoon, Giwan;Chai, Dongkyu;Linh, Mai;Yim, Munhyuk
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.6 no.8
    • /
    • pp.1292-1296
    • /
    • 2002
  • In this paper, a 3-coupled microstrip line tunable bandpass filter has been designed on the basis of a tonductoriFerroelectricfDielectric (CFD) structure. This tunable filter basically exploits the fact that the increase in the bias voltage leads to the reduction of the effective dielectric constant (eon). This reduced $\varepsilon$eff shifts the center frequency (fc) to the higher value. The characteristics of designed filter are as follows; Return loss (RL) is larger than 10 dB; Insertion loss (IL) is les.i than 3.5 dB: 3-dB bandwidth (BW) is less than 1.18 GHz fc can be tuned from 25.4 GHz to 28.8 GHz over the variation of $\varepsilon$eff, from 10 to 13. Therefore, the tunability comes up to 3.4 GHz. The dimension of the filter designed is 7.0 mm ${\times}$ 5.0 nm ${\times}$ 0.5 mm.

Stopband Tunable Multifunctional Gm-C Filter based on OTA with Three-Input/Single-Output (OTA기반의 차단대역 조정이 가능한 3-입력/1-출력 구조의 다기능 Gm-C 필터)

  • Basnet, Barun;Bang, Jun-Ho;Song, Je-ho;Ryu, In-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.5
    • /
    • pp.201-206
    • /
    • 2015
  • A new electronically stopband tunable filter is proposed with three-input single-output using Operational Transconductance Amplifier (OTA) in this paper. The proposed filter provides band pass, low pass and high pass multifunctional responses. Centre frequency ($f_c$) and quality factor (Q) of the realized filters could independently tuned without disturbing each other. Various network sensitivity and non-ideal characteristic analysis are done to check the sensitivity and parasitic effect of different circuit parameters. The CMOS realization of filter is done with 1.8V-0.18um process parameters and HSPICE simulation results are presented to assert the presented theory.

Applying TID-PSS to Enhance Dynamic Stability of Multi-Machine Power Systems

  • Mohammadi, Ramin Shir;Mehdizadeh, Ali;Kalantari, Navid Taghizadegan
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.5
    • /
    • pp.287-297
    • /
    • 2017
  • Novel power system stabilizers (PSSs) have been proposed to effectively dampen low frequency oscillations (LFOs) in multi-machine power systems and have attracted increasing research interest in recent years. Due to this attention, recently, fractional order controllers (FOCs) have found new applications in power system stability issues. Here, a tilt-integral-derivative power system stabilizer (TID-PSS) is proposed to enhance the dynamic stability of a multi-machine power system by providing additional damping to the LFOs. The TID is an extended version of the classical proportional-integral-derivative (PID) applying fractional calculus. The design of the proposed three-parameter tunable TID-PSS is systematized as a nonlinear time domain optimization problem in which the tunable parameters are adjusted concurrently using a modified group search optimization (MGSO) algorithm. An integral of the time multiplied squared error (ITSE) performance index is considered as the objective function. The proposed stabilizer is simulated in the MATLAB/SIMULINK environment using the FOMCON toolbox and the dynamic performance is evaluated on a 3-machine 6-bus power system. The TID-PSS is compared with both classical PID-PSS (PID-PSS) and conventional PSS (CPSS) using eigenvalue analysis and time domain simulations. Sensitivity analyses are performed to assess the robustness of the proposed controller against large changes in system loading conditions and parameters. The results indicate that the proposed TID-PSS provides the better dynamic performance and robustness compared with the PID-PSS and CPSS.

A Design of Single Pixel Photon Counter for Digital X-ray Image Sensor (X-ray 이미지 센서용 싱글 픽셀 포톤 카운터 설계)

  • Baek, Seung-Myun;Kim, Tae-Ho;Kang, Hyung-Geun;Jeon, Sung-Chae;Jin, Seung-Oh;Huh, Young;Ha, Pan-Bong;Park, Mu-Hun;Kim, Young-Hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.2
    • /
    • pp.322-329
    • /
    • 2007
  • A single pixel photon counting type image sensor which is applicable for medical diagnosis with digitally obtained image and industrial purpose has been designed with $0.18{\mu}m$ triple-well CMOS process. The designed single pixel for readout chip is able to be operated by single supply voltage to simplify digital X-ray image sensor module and a preamplifier which is consist of folded cascode CMOS operational amplifier has been designed to enlarge signal voltage(${\Delta}Vs$), the output voltage of preamplifier. And an externally tunable threshold voltage generator circuit which generates threshold voltage in the readout chip has been newly proposed against the conventional external threshold voltage supply. In addition, A dark current compensation circuit for reducing dark current noise from photo diode is proposed and 15bit LFSR(Linear Feedback Shift Resister) Counter which is able to have high counting frequency and small layout area is designed.

Analysis of Leakage Current of a Laser Diode by Equivalent Circuit Model (등가회로 모델에 의한 레이저다이오드의 누설전류 해석)

  • Choi, Young-Kyu;Kim, Ki-Rae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.2
    • /
    • pp.330-336
    • /
    • 2007
  • A single pixel photon counting type image sensor which is applicable for medical diagnosis with digitally obtained image and industrial purpose has tern designed with $0.18{\mu}m$ triple-well CMOS process. The designed single pixel for readout chip is able to be operated by single supply voltage to simplify digital X-ray image sensor module and a preamplifier which is consist of folded cascode CMOS operational amplifier has been designed to enlarge signal voltage(${\Delta}Vs$), the output voltage of preamplifier. And an externally tunable threshold voltage generator circuit which generates threshold voltage in the readout chip has been newly proposed against the conventional external threshold voltage supply. In addition, A dark current compensation circuit for reducing dark current noise from photo diode is proposed and 15bit LFSR(Linear Feedback Shift Resister) Counter which is able to have high counting frequency and small layout area is designed.

Effect of Plasma Area on Frequency of Monostatic Radar Cross Section Reduction

  • Ha, Jungje;Shin, Woongjae;Lee, Joo Hwan;Kim, Yuna;Kim, Doosoo;Lee, Yongshik;Yook, Jong-Gwan
    • Journal of electromagnetic engineering and science
    • /
    • v.17 no.3
    • /
    • pp.153-158
    • /
    • 2017
  • This work reports on the effect of plasma area on the frequency characteristics of the monostatic radar cross section (RCS) of a square metallic plate. A dielectric barrier discharge (DBD) plasma actuator consisting of 10 rings is proposed. The actuator is fabricated in three different configurations such that only three inner rings, seven inner rings, and all rings can be biased. By applying an 18-kV bias at 1 kHz, the three types of DBD actuators generate plasma with a total area of 16.96, 36.74, and $53.69cm^2$, respectively, in a ring or circular form. The experimental results reveal that when the DBD actuator is placed in front of a $20mm{\times}20cm$ conducting plate, the monostatic RCS is reduced by as much as 18.5 dB in the range of 9.41-11.65 GHz. Furthermore, by generating the plasma and changing the area, the frequency of maximum reduction in the monostatic RCS of the plate can be controlled. The frequency is reduced by nearly 20% in the X band when all rings are biased. Finally, an electromagnetic model of the plasma is obtained by comparing the experimental and full-wave simulated results.

High Precision Measurement for String Resonator used in FBG Strain Sensors (광섬유 브래그 격자 변형률 센서용 현공진기의 고정밀 측정)

  • 이영균;송인천;정성호;이병하;이선규
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.135-139
    • /
    • 2001
  • This paper describes a string resonator that is used for the interrogation system of a Fiber Bragg Grating(FBG) strain sensor. The strain on the fiber piece is calculated from the measured frequency based on that the natural frequency of a string is a function of the applied absolute strain. Existing research considered a fiber as a string, but a fiber is not a string in the strict sense due to its bending stiffness, thus the fiber should be modeled as a beam accompanied with an axial force. In the vibration modeling, the relationship between the strain and the natural frequency is derived, and then the resonance condition is described in terms of both the phase and the mode shape for sustaining resonant motion. Several experiments verify the effectiveness of the proposed model of the fiber. The performance of the string resonator is analyzed by measuring the frequency change according to the applied strains in the dynamic range of 1100$\mu\varepsilon$ referred to the displacement from capacitance sensor. From the experimental results, the implemented string resonator provides the accuracy of $\pm$3$\mu\varepsilon$, the quasi-static resolution of ~0.1$\mu\varepsilon$(rms) which amount to be $\pm$0.17$\mu\textrm{m}$ and ~6nm respectively, in case of fiber length of 56mm. For a dynamic strain, it can provide the accuracy of ~3$\mu\varepsilon$ until the frequency comes to 8Hz. As a consequence, the string resonator proposed for FBG sensor provides the high accuracy and the high resolution in strain measurement, and also it is expecting to be used, for the application, to not only strain but also displacement measuring device.

  • PDF