• 제목/요약/키워드: Frequency-domain boundary element method

검색결과 78건 처리시간 0.025초

Elastodynamic analysis by a frequency-domain FEM-BEM iterative coupling procedure

  • Soares, Delfim Jr.;Goncalves, Kleber A.;de Faria Telles, Jose Claudio
    • Coupled systems mechanics
    • /
    • 제4권3호
    • /
    • pp.263-277
    • /
    • 2015
  • This paper presents a coupled FEM-BEM strategy for the numerical analysis of elastodynamic problems where infinite-domain models and complex heterogeneous media are involved, rendering a configuration in which neither the Finite Element Method (FEM) nor the Boundary Element Method (BEM) is most appropriate for the numerical analysis. In this case, the coupling of these methodologies is recommended, allowing exploring their respective advantages. Here, frequency domain analyses are focused and an iterative FEM-BEM coupling technique is considered. In this iterative coupling, each sub-domain of the model is solved separately, and the variables at the common interfaces are iteratively updated, until convergence is achieved. A relaxation parameter is introduced into the coupling algorithm and an expression for its optimal value is deduced. The iterative FEM-BEM coupling technique allows independent discretizations to be efficiently employed for both finite and boundary element methods, without any requirement of matching nodes at the common interfaces. In addition, it leads to smaller and better-conditioned systems of equations (different solvers, suitable for each sub-domain, may be employed), which do not need to be treated (inverted, triangularized etc.) at each iterative step, providing an accurate and efficient methodology.

2차원 경계요소법에 의한 초음파 산란음장의 해석과 응용 (Analysis of Ultrasonic Scattering Fields by 2-D Boundary Element Method and Its Application)

  • 정현조
    • 대한기계학회논문집A
    • /
    • 제29권11호
    • /
    • pp.1439-1444
    • /
    • 2005
  • A two-dimensional boundary element method was used for the scattering analysis of side-drilled hole(SDH). The far-field scattering amplitude was calculated for shear vertical(SV) wave, and their frequency and time-domain results were presented. The time-domain scattering amplitude showed the directly reflected wave from the SDH leading edge as well as the creeping wave. In an immersion, pulse-echo testing, two measurement models were introduced to predict the response from SDHs. The 2-D boundary element scattering amplitude was converted to the 3-D amplitude to be used in the measurement model. The receiver voltage was calculated fer SV wave incidence at 45$^{\circ}C$ on the 1 m diameter SDH, and the result was compared with experiment.

스펙트럴요소법을 이용한 구조물의 비이상적인 경계조건 결정에 관한 연구 (Determination of Non-ideal Structural Boundary Conditions by Using Spectral Element Method)

  • 전덕규;김주홍;이우식
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1997년도 추계학술대회논문집; 한국과학기술회관; 6 Nov. 1997
    • /
    • pp.160-165
    • /
    • 1997
  • Structural boundary condition is very important as a part of a structural system because it determines the dynamic characteristics of the structure. It is often to experience that experimental measurements of structural dynamic characteristics are somewhat different from the analytical predictions in which idealized boundary conditions are usually assumed. However, real structural boundary conditions are not so ideal; not perfectly clamped, for instance. Thus this paper introduces a new method to determine the non-ideal structural boundary conditions in the frequency domain. In this method, structural boundary conditions are modeled by both extensional (vertical) and torsional elastic springs. The effective springs are then determined from experimental FRFs (frequency response functions) by using the spectral element method (SEM). For a cantilevered beam experiments are conducted to determine the real boundary conditions in terms of effective springs. Dynamic characteristics (analytically predicted) based on identified boundary conditions are found to be much closer to experimental measurements when compared with those based on ideal boundary conditions.

  • PDF

Time domain earthquake response analysis method for 2-D soil-structure interaction systems

  • Kim, Doo-Kie;Yun, Chung-Bang
    • Structural Engineering and Mechanics
    • /
    • 제15권6호
    • /
    • pp.717-733
    • /
    • 2003
  • A time domain method is presented for soil-structure interaction analysis under seismic excitations. It is based on the finite element formulation incorporating infinite elements for the far field soil region. Equivalent earthquake input forces are calculated based on the free field responses along the interface between the near and far field soil regions utilizing the fixed exterior boundary method in the frequency domain. Then, the input forces are transformed into the time domain by using inverse Fourier transform. The dynamic stiffness matrices of the far field soil region formulated using the analytical frequency-dependent infinite elements in the frequency domain can be easily transformed into the corresponding matrices in the time domain. Hence, the response can be analytically computed in the time domain. A recursive procedure is proposed to compute the interaction forces along the interface and the responses of the soil-structure system in the time domain. Earthquake response analyses have been carried out on a multi-layered half-space and a tunnel embedded in a layered half-space with the assumption of the linearity of the near and far field soil region, and results are compared with those obtained by the conventional method in the frequency domain.

시간 영역 음향 경계요소법에서의 비유일성 문제 해결을 위한 방법에 관하여 (On the Solution Method for the Non-uniqueness Problem in Using the Time-domain Acoustic Boundary Element Method)

  • 장해원;이정권
    • 한국음향학회지
    • /
    • 제31권1호
    • /
    • pp.19-28
    • /
    • 2012
  • Kirchhoff 적분식을 이용하여 외부 음향 문제의 시간 영역 응답을 계산하는 경우, 주파수영역 해석과 마찬가지로 가상적인 내부 음향 모드에 기인한 비유일성 문제가 발생한다. 이를 해결하는 방법들 중의 하나로서 CHIEF(Combined Helmholtz Integral Equation Formulation) 방법이 쓰이는데, 이는 몇몇 내부 수음점의 응답을 0으로 추가하여 구속하는 조건을 부가하는 기법이다. 이 기법은 주파수 영역 경계요소법에서는 간편한 수식 때문에 많이 사용되고 있지만, 시간 영역에서는 사용된 예가 없다. 본 연구에서는 대상체 내부의 가상 수음점과 경계 표면의 절점들간의 최소 거리에 대한 지연시간을 고려하여, 계산하고자 하는 미지수인 현재 시간의 경계 표면 음장을 구속함으로써, 시간 영역 해석에 적합하도록 CHIEF 방법을 수식화하였다. 예제로서, 반지름 방향으로 진동하는 구의 음향 방사 문제를 다루었다. CHIEF 방법을 적용함에 따라 저차의 내부 음향 모드에 기인한 비유일성 문제를 해결할 수 있었고, 비요동 모드에 의한 수치적 불안정성을 피할 수 있었다. 그러나, 유효주파수 밖에 남은 내부 음향의 고차모드들에 의한 수치적 불안정성은 증가하였다.

지반-구조물 상호작용의 시간영역 해석을 위한 무한경계요소 (Infinite Boundary Elements for Soil-Structure Interaction Analysis in Time Domain)

  • 윤정방;최준성
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1994년도 봄 학술발표회 논문집
    • /
    • pp.137-144
    • /
    • 1994
  • In this study, a new procedure for solving 2-D dynamic problems of semi-infinite medium in time domain by boundary element method (BEM) is presented. Efficient modelling of the far field region, infinite boundary elements are introduced. The shape function of the infinite boundary element is a combination of decay functions and Laguerre functions. Though the present shape functions have been developed for the time domain analysis, they may be also applicable to the frequency domain analysis. Through the response analysis in a 2-D half space under a uniformly distributed dynamic load, it has been found that an excellent accuracy can be achieved compared with the analytical solution

  • PDF

밀도가 상이한 두 유체층에서 부유체 동유체력 특성의 수치적 해석 (Numerical Analysis of Hydrodynamic Forces on a Floating Body in Two-layer Fluids)

  • 김미근;구원철
    • 대한조선학회논문집
    • /
    • 제47권3호
    • /
    • pp.369-376
    • /
    • 2010
  • In this study, a radiation and a diffraction problems of a floating body in two-layer fluids were solved by the Numerical Wave Tank(NWT) technique in the frequency domain. In two-layer fluids, two different wave modes exist and the hydrodynamic coefficients can be obtained separately for each mode. The two-domain Boundary Element Method(BEM) in the potential fluid using the whole-domain matrix scheme was used to investigate the characteristics of wave forces, added mass and damping coefficients. The effects of the ratio of density and water depth in the lower domain were also evaluated and compared with given references.

Forced vibration analysis of a dam-reservoir interaction problem in frequency domain

  • Keivani, Amirhossein;Shooshtari, Ahmad;Sani, Ahmad Aftabi
    • Interaction and multiscale mechanics
    • /
    • 제6권4호
    • /
    • pp.357-375
    • /
    • 2013
  • In this paper, the forced vibration problem of an Euler-Bernoulli beam that is joined with a semi-infinite field of a compressible fluid is considered as a boundary value problem (BVP). This BVP includes two partial differential equations (PDE) and some boundary conditions (BC), which are introduced comprehensively. After that, the closed-form solution of this fluid-structure interaction problem is obtained in the frequency domain. Some mathematical techniques are utilized, and two unknown functions of the BVP, including the beam displacement at each section and the fluid dynamic pressure at all points, are attained. These functions are expressed as an infinite series and evaluated quantitatively for a real example in the results section. In addition, finite element analysis is carried out for comparison.

Forced vibration analysis of a dam-reservoir interaction problem in frequency domain

  • Keivani, Amirhossein;Shooshtari, Ahmad;Sani, Ahmad Aftabi
    • Coupled systems mechanics
    • /
    • 제3권4호
    • /
    • pp.385-403
    • /
    • 2014
  • In this paper, the forced vibration problem of an Euler-Bernoulli beam that is joined with a semi-infinite field of a compressible fluid is considered as a boundary value problem (BVP). This BVP includes two partial differential equations (PDE) and some boundary conditions (BC), which are introduced comprehensively. After that, the closed-form solution of this fluid-structure interaction problem is obtained in the frequency domain. Some mathematical techniques are utilized, and two unknown functions of the BVP, including the beam displacement at each section and the fluid dynamic pressure at all points, are attained. These functions are expressed as an infinite series and evaluated quantitatively for a real example in the results section. In addition, finite element analysis is carried out for comparison.

비선형 지반-구조물 상호작용해석을 위한 새로운 복합법 (A New Hybrid Method for Nonlinear Soil-Structure Interaction Analysis)

  • 김재민;최준성;이종세
    • 한국지진공학회논문집
    • /
    • 제7권6호
    • /
    • pp.1-7
    • /
    • 2003
  • 이 논문에서는 비선형 지반-구조물 상호작용해석을 위한 새로운 시간-주파수영역 복합법을 제시하였다. 제안한 방법은 등가선형 지반-구조물 상호작용해석 프로그램과 범용 비선형 유한요소해석 프로그램을 동시에 사용하는 실용적인 방법이다. 이 방법에서는 먼저 주파수영역에서 등가선형 지반-구조물 상호작용해석을 수행하여 유한요소 영역의 경계면에서 응답을 구한 다음, 이를 범용 비선형 유한요소해석 프로그램에 의한 비선형 동적해석의 시간의존 경계조건으로 입력한다. 제안된 방법의 검증을 위하여 2차원 지하철 정거장 구조물에 대한 지진해석을 수행하였다. 이를 위하여 등가선형 지반-구조물 상호작용해석 프로그램 KIESSI-2D와 비선형 유한요소해석 프로그램 ANSYS를 사용하였다 수치적인 해석결과로부터 이 연구에서 제안한 방법의 타당성을 확인할 수 있었다.