• Title/Summary/Keyword: Frequency-Consequence

Search Result 216, Processing Time 0.031 seconds

Frequency Characteristics of Anodic Oxide Films: Effects of Anodization Valtage

  • Lee, Dong-Nyung;Yoon, Young-Ku
    • Nuclear Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.14-22
    • /
    • 1974
  • Effects of anodization voltage on frequency characteristics of anodic oxide films on tantalum were analyzed based on the following impedance equatious : (equation omitted) Here $R_{f}$, $C_{f}$ and tan $\delta$$_{f}$ are equivalent series resistance in ohm, equivalent Belies capacitance in farad and dielectric loss, of anodic oxide films respectively Parameters P, $\tau$$_{ο}$, $\tau$$_{\omega}$, and Co are defined as follows: P=(d-w)/w, $\tau$$_{ο}$=$textsc{k}$$\rho$$_{ο}$, $\tau$$_{\omega}$=$textsc{k}$$\rho$$_{\omega}$, $C_{ο}$=$textsc{k}$A/d where d is the thickness of oxide film, $\omega$ is the diffusion layer thickness. $\rho$$_{ο}$ is the resistivity of oxide film at the interface of metal and the oxide, $\rho$$_{\omega}$ is the resistivity of oxide film at intrinsic region and A is the area of the film and $textsc{k}$=0.0885$\times$10$^{-12}$ $\times$dielectric constant, (in farad/cm). It was shown that dielectric loss and frequency dependence of equivalent series capacitance decrease as anodization voltage increases. This is a consequence of the fact that the thickness of diffusion layer increases a little with increasing anodization voltage whereas the total oxide thickness is proportional to the anodization voltage. The ngative deviation of measured values from tile relation, tan $\delta$$_{f}$=0.682 $\Delta$ $C_{f}$, was also discussed based on the Impedance equations given above. Here $\Delta$ $C_{f}$ is the change in capacitance between 0.1 and 1 KHZ.KHZ.Z.

  • PDF

Risk Analysis of Ammonia Leak in the Refrigeration Manufacturing Facilities (냉동제조 시설의 암모니아 누출사고 위험 분석)

  • Kang, Su-Jin;Lee, Ik-Mo;Moon, Jin-Young;Chon, Young-Woo
    • Journal of the Korean Institute of Gas
    • /
    • v.21 no.1
    • /
    • pp.43-51
    • /
    • 2017
  • Recently, ammonia leak occurred frequently in the domestic refrigeration manufacturing facilities. Ammonia caused great damage to the environment and human health in the event of an accident as combustible gases and toxic gases. After considering the types of ammonia accidents of domestic refrigeration manufacturing facilities and selected accident scenarios and to analyze the risk analysis through Impact range estimates and frequency analysis and there was a need to establish measures to minimize accident damage. In this study, depending on the method of analysis quantitative risk assessment we analyzed the risk of the receiver tank of ammonia system. Scenario analysis conditions were set according to the 'Technical guidelines for the selection of accident scenario' under the chemicals control act and 'Guidelines for chemical process quantitative risk analysis' of center for chemical process safety. The risk estimates were utilized for consequence analysis and frequency analysis by SAFETI program of DNV, event tree analysis methodology and part count methodology. The individual risk of ammonia system was derived as 7.71E-04 / yr, social risk were derived as 1.17E-03 / yr. The derived risk was confirmed to apply as low as reasonably practicable of the national fire protection association and through risk calculation, it can be used as a way to minimize accidents ammonia leakage accident damage.

Identification and Characterization of Human Genes Targeted by Natural Selection

  • Ryu, Ha-Jung;Kim, Young-Joo;Park, Young-Kyu;Kim, Jae-Jung;Park, Mi-Young;Seo, Eul-Ju;Yoo, Han-Wook;Park, In-Sook;Oh, Berm-Seok;Lee, Jong-Keuk
    • Genomics & Informatics
    • /
    • v.6 no.4
    • /
    • pp.173-180
    • /
    • 2008
  • The human genome has evolved as a consequence of evolutionary forces, such as natural selection. In this study, we investigated natural selection on the human genes by comparing the numbers of nonsynonymous (NS) and synonymous (S) mutations in individual genes. We initially collected all coding SNP data of all human genes from the public dbSNP. Among the human genes, we selected 3 different selection groups of genes: positively selected genes (NS/S${\geq}$3), negatively selected genes (NS/S${\leq}$1/3) and neutral selection genes (0.9

Development of Helmholtz Solver for Thermo-Acoustic Instability within Combustion Devices (연소시스템의 열음향 불안정 예측을 위한 Helmholtz Solver 개발)

  • Kim, Seong-Ku;Choi, Hwan-Seok;Cha, Dong-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.5
    • /
    • pp.445-455
    • /
    • 2010
  • In order to effectively predict thermo-acoustic instability within real combustors of rocket engines and gas turbines, in the present study, the Helmholtz equation in conjunction with the time lag hypothesis is discretized by the finite element method on three-dimensional hybrid unstructured mesh. Numerical nonlinearity caused by the combustion response term is linearized by an iterative method, and the large-scale eigenvalue problem is solved by the Arnoldi method available in the ARPACK. As a consequence, the final solution of complex valued eigenfrequency and acoustic pressure field can be interpreted as resonant frequency, growth rate, and modal shape for acoustic modes of interest. The predictive capabilities of the present method have been validated against two academic problems with complex impedance boundary and premixed flame, as well as an ambient acoustic test for liquid rocket combustion chamber with/without baffle.

Quantitative Risk Assessment for Gas-explosion at Buried Common Utility Tunnel (지하 매설 공동구 내부 가스 폭발에 대한 위험성 평가)

  • Jang, Yuri;Jung, Seungho
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.5
    • /
    • pp.89-95
    • /
    • 2016
  • Keeping the gas pipelines in the common utility tunnel is useful because it has a lower risk of corrosion than conventional burial, and can prevent from excavating construction. But, explosions in common utility tunnels can cause greater damage from the blast overpressure compared to outdoor explosions, due to nature of the confined environment. Despite this fact, however, research on common utility tunnels has been limited to fire hazard and little has been studied on the dangers of explosions. This study developed scenarios of methane gas explosion caused by gas leak from gas piping within the common utility tunnel followed by unknown ignition; the study then calculated the extent of the impact of the explosion on the facilities above, and suggested the needs for designing additional safety measures. Two scenarios were selected per operating condition of safety devices and the consequence analysis was carried out with FLACS, one of the CFD tools for explosion simulation. The overpressures for all scenarios are substantial enough to completely destroy most of the buildings. In addition, we have provided additional measures to secure safety especially reducing incident frequency.

A Numerical Study of the Effects of Design Parameter upon Fan Performance and Noise (원심홴의 설계 변수가 홴의 성능과 소음에 미치는 영향의 수치적 연구)

  • Jeon, Wan-Ho;Lee, Duck-Joo
    • The KSFM Journal of Fluid Machinery
    • /
    • v.2 no.3 s.4
    • /
    • pp.45-51
    • /
    • 1999
  • Centrifugal fans are widely used and the noise generated by these machines causes one of the most serious problems. In general, the centrifugal fan noise is often dominated by tones at BPF(blade passage frequency) and its higher harmonics. This is a consequence of the strong interaction between the flow discharged from the impeller and the cutoff in the casing. However, only a few researches have been carried out on predicting the noise due to the difficulty in obtaining detailed information about the flow field and casing effects on noise radiation. The objective of this study is to develop a prediction method for the unsteady flow field and the acoustic pressure field of a centrifugal fan and to calculate the effects of rotating velocity, flow rate, cut-off distance and the number of blades and its effects on the noise of the fan. We assume that the impeller rotates with a constant angular velocity and the flow field around the impeller is incompressible and inviscid. So, a discrete vortex method (DVM) is used to model the centrifugal fan and to calculate the flow field. The force of each element on the blade is calculated with the unsteady Bernoulli equation. Lowson's method is used to predict the acoustic source. The cut-off distance is the most important factor effecting the noise generation. Acoustic pressure is proportional to 2.8, which shows the same scaling index as the experimental result. In this paper, the cut-off distance is found to be the dominant parameter offecting the acoustic pressure.

  • PDF

The Electromagnetic and Thermal Properties of the Mn-Zn Ferrite for the Power Line Communication

  • Lee, Hae-Yon;Kim, Hyun-Sik;Huh, Jeoung-Sub;Oh, Young-Woo
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.12C no.4
    • /
    • pp.220-224
    • /
    • 2002
  • The electromagnetic properties and thermal behavior of Mn-Zn ferrite cores for the blocking filter of PLC application were investigated as the function of additives. The highest density and permeability were 4.98 g/㎤ and 8,221, respectively and were obtained to the specimen with composition of MnO 24 mol%, ZnO 25 mol% and Fe$_2$O$_3$51 mol%, added MoO$_3$ of 400 ppm, SiO$_2$ of 100 ppm, and CaO of 200 ppm. The uniform grains were organized, and the microstructures were compacted due to reduction of pores in the specimen. The permeability was increased up to 13,904 as the temperature of specimen increased to 110。C. However, it was decreased precipitously under 100 over 110。C. The exothermic behavior was observed in the frequency range from 1 kHz to 1 MHz, and the maximum temperature of specimen was 102。C at 1 MHz. In the consequence, the Mn-Zn ferrite core developed in this research will maintain the stable electromagnetic properties since the temperature of ferrite core rose to 93 。C in the range of 100 kHz to 450 kHz bandwidth qualified for PLC. The blocking filters were designed for single phase and three phases using the in-line and non-contact core. The best attenuation ratios of -46.46 dB and -73.9 dB were measured in the range of 100 kHz to 450 kHz bandwidth, respectively.

Effect of the Bean Sprouts Growth by Scanning Frequency of Diagnostic Ultrasound Probe Type and Mode Change (진단용 초음파 Probe 및 Mode 변화에 따른 초음파 주사빈도가 콩나물 발아 과정에 미치는 영향)

  • Choi, Kwanyong;Lim, Hyun Soo
    • Journal of Biomedical Engineering Research
    • /
    • v.36 no.5
    • /
    • pp.150-154
    • /
    • 2015
  • Long time ultrasound scan can cause a temperature rise in human tissue and affect the physical body. This is closely connected with patients' safety. So many researchers have been studied on this matter with animals such as mammals and experimental rat, because diagnostic ultrasound has been used many types of human organ to find disease. Therefore, this study is tested on bean sprouts to search how far the tissue temperature changes because of the excessive scanning consequence from ultrasound diagnosis and frequent number of ultrasonic scanning and how much affect their growth. The United States and several European countries have restrictions for number of scanning, while South Korea does not have any limitation for using ultrasound diagnosis. Comparison was that how different condition affect its' growing. The testing group is like many pregnancy moms to have 50 minutes in B-mode and color doppler mode by linear, convex and sector probe every day for a week and the other is to scan only once during the testing period. As a result, it was confirmed that there was a significant growing difference on frequent ultrasonic scanning group compared to normal one. So the final conclusion is that there needs to have a significant limitation of ultrasound scan time and a number of inspection when having for diagnostic ultrasound and recommendation like USA and a few European countries.

A Study on the Development of the FEP and Scenario for the HLW Disposal in Korea (우리나라의 고준위폐기물 처분을 위한 FEP과 시나리오 개발)

  • Kang, Chul-Hyung;Jeong, Jong-Tae;Choi, Jong-Won
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.10 no.3
    • /
    • pp.133-141
    • /
    • 2012
  • The impacts influenced on the performance and safety of a repository are classified as units of Features, Events, and Processes (FEP), for the total system performance assessment (TSPA) related to the permanent disposal of HLW. The importance is evaluated in consideration of the frequency, consequence, regulation, suitability of a specific site, etc. and then these are grouped as a similar FEP. A scenario describing the migration of radionuclide from the repository to the biosphere is derived from understanding the interaction among these groups. KAERI has developed the KAERI FEP lists by review and collation of the foreign studies. The KAERI FEP list has been reviewed by several Korean experts. The five major scenarios describing possible future evolutions of the geological disposal system have been developed by RES and PID methods. Also the CYPRUS which is a KAERI integrated database management system for the total system performance assessment (TSPA) related to the permanent disposal of HLW has been developed and the results of the FEP and scenario development have been uploaded in this system.

Effects of the Injected Number and Amplitude of 8/20 [μs] Impulse Current on the Life of ZnO Varistors (8/20 [μs] 임펄스전류의 인가횟수와 크기가 ZnO바리스터의 수명에 미치는 영향)

  • Lee, Bok-Hee;Li, Feng
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.1
    • /
    • pp.118-124
    • /
    • 2007
  • This paper presents the effects of the injected number and amplitude of impulse current on the service life of ZnO varistors for low voltages. To analyze the effects of lightning impulse currents on the performance of ZnO varistors, the measurements of resistive leakage current and power dissipation at the power frequency ac voltage before and after the injections of the $8/20[{\mu}s]$ impulse currents were made. As a consequence, the duration and amplitude of resistive leakage current flowing through ZnO varistor were increased with increasing the number of injections of the $8/20[{\mu}s]$ impulse currents. It is desirable that the service life of ZnO varistors should be evaluated as a function of the number and amplitude of lightning impulse current.