• Title/Summary/Keyword: Frequency variation

Search Result 2,864, Processing Time 0.035 seconds

Analysis of Frequency Response Depending on Wire-bonding Length Variation (Wire-bonding의 길이 변화에 따른 주파수별 특성 분석)

  • Gwon, Eun-Jin;Mun, Jong-Won;Ryu, Jong-In;Park, Se-Hoon;Kim, Jun-Chul
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.551-552
    • /
    • 2008
  • This paper presets a results of frequency response in variation of wire bonding length. A gold ball bonding is used as a wire bonding process, and a DPDT(double pole double thru) switch is adapted as a device for test. Wire length is ranged from 442um to 833um and a measured frequency range is from 1 GHz to 6 GHz. Little difference are measured in insertion loss and return loss depending on wire length. Measured S21 and S11 are -0.58 dB and -17.7 dB, respectively. S21 insertion loss is rising up and S11 insertion loss is falling down as the frequency is increased.

  • PDF

Performance Analysis on the Variable Speed Scroll Compressor with Operating Conditions (가변속 스크롤 압축기의 운전조건의 변화에 따른 성능 해석)

  • 박홍희;박윤철;김용찬
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.7
    • /
    • pp.649-658
    • /
    • 2000
  • Thermodynamic modeling of low-pressure scroll compressor was developed by combining continuity and energy conservation equation. Suction gas heating was considered using energy balance inside the low pressure shell. Pressure, temperature and mass of refrigerant-22 as a function of orbiting angle were calculated by solving the governing equations using fourth order Rung-Kutta scheme. Motor efficiency was taken by experiments with a variation of frequency. The developed model was applied to the analysis of an inverter driven scroll compressor with a variation of frequency, pressure ratio and operating conditions. The model was verified with the experimental results at the same operating conditions. The developed model was adequate to predict performance of the inverter driven scroll compressor as a function of operating conditions. Calculated parameters from the model were discharge temperature, mass flow rate, power input, COP, and thermodynamic properties with respect to orbiting angle. To enhance the performance of a scroll compressor, it is essential to diminish leakage at low frequency level and improve the mechanical efficiency at high frequency level.

  • PDF

Piexoelectric Ceramics of $Pb(Mn_{1/3} Nb_{2/3})O_3-PbTiO_3-PbZrO_3$ for Band Pass Filter ($Pb(Mn_{1/3} Nb_{2/3})O_3-PbTiO_3-PbZrO_3$ 계 압전 세라믹의 필터로서의 응용)

  • 류영대;조상희
    • Journal of the Korean Ceramic Society
    • /
    • v.23 no.3
    • /
    • pp.21-26
    • /
    • 1986
  • In this study the system of $Pb(Mn_{1/3} Nb_{2/3})O_3-PbTiO_3-PbZrO_3$ piexoelectric ceramics was made in the radial mode disk and attenuation characteristic of the desinged ladder type filter was investigated. What is more temperature dependance of resonant frequency and variation of resonant frequency was examined by chan-ging the electrode diameter of piezoelectric resonator. (A Group : De=11mm, B Group : De=7.5mm and C Gro-up : De=5.5mm) Upon investigation it was the following. The center frequency of A, B and c filter showed up in the 200KHz, 270KHz and 380KHz respectively. As the electrode diameter decreased center frequency in creased abruptly. As the Co_2/Co1 increased attenuation characteristics and selectivity was improved. As the x=50. resonant frequ-ency invaried with variation of temperature.

  • PDF

Analysis of the Face-Mounted PZT Piezoelectric Transformer (적층형 PZT 압전변합기의 특성해석)

  • 박창엽;한득영
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.33 no.9
    • /
    • pp.355-363
    • /
    • 1984
  • An ideal and an approximate eauivalent circuits of a face-mounted PZT piezoelectric transformer were introduced from the equivalent circuit taking into account the mechanical loss of a PZT piezoelectric disk vibrator. And several expressions for the resonant frequencies and for the voltage ratios were derived from the approximate circuit of the transformer. From the experiments on the vltage ratios regarding the frequency variation without load and on the load variation at resonant frequency, it was found that the voltage ratio increased with the increase of load resistance and decreased sharply with the slight deviation from the resonant frequency, and that no-load voltage ratio at the resonant frequency was proportional to the product of the mechanical quality factor and the square of the electromechanical coupling factor of the vibrator.

  • PDF

Reliability Characteristics of Voltage-Controlled Oscillator with Channel Width Variation (채널 폭 변화에 따른 전압-제어 발진기의 신뢰성 특성)

  • Choi, Jin-Ho;Lim, In-Taek
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.717-718
    • /
    • 2013
  • The output frequency of VCO(Voltage-Controlled Oscillator) with input frequency is changed if CMOS channel length and width are changed. In this paper, the electrical characteristics of VCO circuit is used as a part of FLL circuit are simulated with CMOS channel width. And the method is introduced to improve the reliability characteristics of VCO with channel width variation.

  • PDF

Analysis of Phase Error Effects Due to Grid Frequency Variation of SRF-PLL Based on APF

  • Seong, Ui-Seok;Hwang, Seon-Hwan
    • Journal of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.18-26
    • /
    • 2016
  • This paper proposes a compensation algorithm for reducing a specific ripple component on synchronous reference frame phase locked loop (SRF-PLL) in grid-tied single-phase inverters. In general, SRF-PLL, which is based on all-pass filter to generate virtual voltage, is widely used to estimate the grid phase angle in a single-phase system. In reality, the estimated grid phase angle might be distorted because the phase difference between actual and virtual voltages is not 90 degrees. That is, the phase error is caused by the difference between cut-off frequency of all-pass filter and grid frequency under grid frequency variation. Therefore, the effects on phase angle and output current attributed to the phase error are mathematically analyzed in this paper. In addition, the proportional resonant (PR) controller is adapted to reduce the effects of phase error. The validity of the proposed algorithm is verified through several simulations and experiments.

Non-stationary signal analysis by Continuous Wavelets Transform (웨이브렛 변환을 이용한 비정상 신호의 순간 주파수 결정)

  • Cho, Ig-hyun;Lee, In-Soo;Yoon, Dong-han
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.2 no.2
    • /
    • pp.29-36
    • /
    • 2009
  • The analysis of Radar signal, telecommunication, bioengineering, seismic, and acoustic signal is consist of the Non-stationary signal which has non-linear phase variation. Non-stationary signal means that the physical properties of signal depend on time variation and the instantaneous frequency represents physical property of these type of signal. Thus estimation of the instantaneous frequency of non-stationary signal is important subject in signal processing. In this work, the instantaneous frequency analysis method utilizing continuous wavelets transform is represented and compared with Hilbert Transform method.

  • PDF

Quantitative Nondestructive Evaluation of Bonded Joints utilizing Pulse-Echo Ultrasonic Test (펄스-에코법을 이용한 접착접합 시험편의 정량적 비파괴 평가)

  • Oh, Seung-Kyu;Hwang, Young-Taek;Lee, Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.3
    • /
    • pp.157-164
    • /
    • 2003
  • The pulse-echo method is one of the most widely used ultrasonic techniques for application of nondestructive evaluation. Particularly, quantitative nondestructive evaluation of defects has been considered more important to assure the reliability and the safety of structure. Frequency energy in adhesive joints is based on the ultrasonic wave analysis. The attenuation coefficient upon wave amplitude and the frequency energy that is expressed in the term of wave pressure amplitude were utilized for the primary wave experiment. By means of a control experiment, it was confirmed that the variation of the frequency energy in adhesive joints depends on transition by stress variation. In this paper, the ultrasonic characteristics were measured for single lap joint and Double Cantilever Beam specimen with different fracture modes that was subjected to stress. Consequently, the data that was obtained from the adhesive specimen was analytically compared to the fracture mechanics parameter

A Study on the Manufacture of the Water Sensor (물방울 감지 센서의 제작에 관한 연구)

  • Kim, Jin Kook;Lee, Yun Min
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.10 no.2
    • /
    • pp.37-45
    • /
    • 2014
  • This paper is a study of the water sensor using a coaxial cavity resonator. This water sensor uses the resonant frequency variation of the coaxial cavity resonator when there is a water drop of the used coaxial cavity resonator. And we made resonant frequencies by controlling the input voltage of the oscillator which will be mainly resonated in the coaxial cavity resonator. First, we made the coaxial cavity resonator by simulating the resonator structure with the proposed size and we expect the resonant frequency from the simulation and then we decide the VCO from the result. Second, we made the water drop detecting sensor circuit and measured the water sensor. We decided the size of the resonator as inner conductor 5mm, outer conductor 14mm, the height of resonator 9.5mm, and the height of the glass 6mm from the simulated result. The simulated resonant frequencies are 3.09GHz and we made the VCO frequency ranges from 2.56GHz to 3.2GHz. The measured resonant frequency is 2.97GHz and the return loss is under -8. 4 dB at the center frequency. When the water is dropped on the glass of the resonator, the voltage has changed from 690mV to 145mV. It shows the proposed water sensor can detect the water by the resonant frequency variation of the resonator.

Study on Low Frequency Swishing Sound Field by a Singularity in Circular Motion with Large Radius (큰 반경의 원운동을 하는 점 음원에 의한 저주파수 스위싱 음장 분석)

  • Lee, Gwang-Se;Cheong, Cheolung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.7
    • /
    • pp.569-574
    • /
    • 2014
  • In order to investigate low frequency swishing noise of wind turbines, acoustic source model using a singularity in circular motion is introduced to derive analytic solution of Lowson acoustic analogy in time domain. Results in time and frequency domains computed by the solution show apparent modulation of amplitude and frequency. The solution indicates that time histories of acoustic pressure at receiver points varied significantly according to receiver's directional location, even when the retarded time distributions are similar. However, the corresponding time-averaged spectra of sound pressure at the receiver locations where the retarded time distributions are almost same are not significantly different. It can be inferred from these results that the time-averaged sound pressure spectra which cannot take into account the detailed difference in the time-variation of wind turbine noise may not represent the sound quality of wind turbines due to its swishing. Finally, as an introduction of procedure to quantify low frequency swishing noise level, relative variation of overall sound pressure level is obtained using tonal low frequency noise model.