• Title/Summary/Keyword: Frequency response characteristics

Search Result 1,537, Processing Time 0.034 seconds

A Study on Analysis of Non linear Frequency Response of Electro-Hydraulic Systems (전기 유압 시스템의 비선형 주파수 응답 해석에 관한 연구)

  • Lee, Yong-Joo;Jun, Bong-Geon;Song, Chang-Seop
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.1 s.94
    • /
    • pp.246-252
    • /
    • 1999
  • In this paper, the frequency response characteristics of the velocity controlled EHS system obtained by linear simulation method, nonlinear simulation method, and experimentation are compared one another, in order to verify propriety of the linearization method in case of analysis of hydraulic systems. The Bode diagrams are obtained by transforming time domain data of experimental results and nonlinear simulated ones with Fourier transform. The results of nonlinear simulation are more similar to the frequency response of the real systems than those of linear simulation. It is found that nonlinearity of hydraulic systems is mainly occurred from servo valve, and nonlinearity is increased as displacement of servo valve spool increases.

  • PDF

Analysis of the Vibration of High Speed Trains and the Irregularity of Railway Using a Wavelet-based Frequency Response Function (웨이브렛 기반 주파수 응답함수를 이용한 고속철도차량의 진동 및 궤도불규칙 특성 분석)

  • Lee, Jun-Seok;Choi, Sung-Hoon;Kim, Sang-Soo;Park, Choon-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.766-771
    • /
    • 2008
  • In this paper, the vibration of high speed trains and the irregularity of railway are examined using a wavelet-based frequency response function. To investigate their characteristics, non-stationary acceleration data are acquired and processed using the wavelet transform. Also, the railway irregularity is examined by acquiring the data from the on-board laser-based measurement system. The correlation between the train vibration and the railway irregularity has been investigated. From the analysis, the wavelet-based frequency response function is a promised method for the dynamic characteristics of high speed trains.

  • PDF

Frequency Response Characteristics of Two-Staged Gear Reduction Servo System According to the Backlash Contribution Ratio Variation of Each Gear Reduction Stage (감속단 백래시 기여율 변화에 따른 2단 기어 감속서보 시스템의 주파수 응답 특성)

  • Baek, Joo-Hyun;Hong, Sung-Min;Yang, Tae-Suk;Kim, Soo-Hyun;Kwak, Yoon-Keun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.5
    • /
    • pp.103-109
    • /
    • 2002
  • The paper investigates the change of frequency response characteristics on two-stage gear reduction servo system according to the variation of backlash amount of each gear reduction stage, under the condition that the backlash of total system is constant. It is shown that the frequency response characteristics of the system heavily depend on the contribution ratio which is defined as a ratio of the first backlash amount to the total backlash. It is also found that there is an optimal backlash combination to maximize the bandwidth of two-stage gear reduction servo system when the allowable total backlash is determined.

Dynamic Analysis of Mechanical Joint Parameters Using the Variation of Frequency Response Function (주파수응답함수의 변화를 이용한 기계적 결합부의 동특성 파라미터 해석)

  • 강성구;지태한;유원희;박영필
    • Journal of KSNVE
    • /
    • v.4 no.2
    • /
    • pp.155-161
    • /
    • 1994
  • The dynamic behavior of a complex mechanical structure can be identified by dividing the structure into a series of smaller structure, called sub- structure and by studying the dynamic characteristics of these components. Generally, the dynamic characteristics of mechanical structure are strongly affected by the properties of joint parameters. In this paper, to identify the dynamic characteristics of mechanical structure, and experimental identification method in which directrly measured frequency response function(FRF) is used is considered. The method does not use the procedure of complex matrix calculation but use that of real matrix calculation. To confirm this method, computer simulation is performed by using frequency response function mixed with noise, and the experimental study is performed about the simple structure. The dynamic characteristics of joint parameters and identified more accurately than in using the prcedure of complex matrix calculation.

  • PDF

Shaking table test and numerical analysis of nuclear piping under low- and high-frequency earthquake motions

  • Kwag, Shinyoung;Eem, Seunghyun;Kwak, Jinsung;Lee, Hwanho;Oh, Jinho;Koo, Gyeong-Hoi;Chang, Sungjin;Jeon, Bubgyu
    • Nuclear Engineering and Technology
    • /
    • v.54 no.9
    • /
    • pp.3361-3379
    • /
    • 2022
  • A nuclear power plant (NPP) piping is designed against low-frequency earthquakes. However, earthquakes that can occur at NPP sites in the eastern part of the United States, northern Europe, and Korea are high-frequency earthquakes. Therefore, this study conducts bi-directional shaking table tests on actual-scale NPP piping and studies the response characteristics of low- and high-frequency earthquake motions. Such response characteristics are analyzed by comparing several responses that occur in the piping. Also, based on the test results, a piping numerical analysis model is developed and validated. The piping seismic performance under high-frequency earthquakes is derived. Consequently, the high-frequency excitation caused a large amplification in the measured peak acceleration responses compared to the low-frequency excitation. Conversely, concerning relative displacements, strains, and normal stresses, low-frequency excitation responses were larger than high-frequency excitation responses. Main peak relative displacements and peak normal stresses were 60%-69% and 24%-49% smaller in the high-frequency earthquake response than the low-frequency earthquake response. This phenomenon was noticeable when the earthquake motion intensity was large. The piping numerical model simulated the main natural frequencies and relative displacement responses well. Finally, for the stress limit state, the seismic performance for high-frequency earthquakes was about 2.7 times greater than for low-frequency earthquakes.

Sweet Area Determination by Performance Sensitivity Analysis for an Automotive Vehicle Suspension (자동차용 현가장치의 성능감도해석에 의한 안정승차영역의 결정)

  • Park, Ho;Hahn, Chang-Su;Kim, Byeong-Woo;Kim, Dong-Gyu
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.1
    • /
    • pp.92-100
    • /
    • 2003
  • Using a quarter car model, an analytic method for performance estimation of a vehicle suspension system with respect to frequency response, RMS response and performance index is presented. From frequency response function, compromization of response performance to the whole frequency range is verified and from RMS response and performance index, sensitivity of ride md handling characteristics are examined. Using a full car model, sweet area(stable ride area) are determined and performance sensitivity is estimated according to the change of feedback gains. In order to esimate the output sensitivity, response we is displayed using a 3-dimensional contour plot. Design data n suggested for optimal design parameter esimation, which maximize the performance of the given suspension system.

A Study on the Frequency Response Characteristics of High Response Flow Control Servo Valve

  • Seo Jong Soo;Shin You Sik;Chun Young Heung;Jeong Hyo Min;Chung Han Shik
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.12 no.3
    • /
    • pp.131-140
    • /
    • 2004
  • The purpose of this research is to derive the principal design parameters governing the dynamic characteristics of the high response flow control servo valve. For this purpose, a numerical modeling of the servo valve system and a parameter sensitivity analysis to a frequency response characteristics were performed. As a result of these analysis, a basis for improvement of a dynamic characteristics of servo valve was arranged.

Acoustical Dynamic Response Analysis of a Gas Turbine Combustor Using a Sine-Sweep Forcing Model (사인-스윕 가진 모델을 통한 가스터빈 연소기의 음향 동적 반응 해석)

  • Son, Juchan;Kim, Daesik
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.26 no.4
    • /
    • pp.1-9
    • /
    • 2022
  • In the current study, in order to understand the dynamic response characteristics of the system according to the external acoustic forcing, a numerical approach was developed by adding an sign-sweep forcing function to the existing network model. Through this model, the sensitivity of frequency and pressure amplitude changes according to system parameters such as the physical dimensions and boundary conditions of the target combustor was analyzed in a wide frequency range. Analysis results of dynamic response characteristics of the target combustor are shown that the frequency regime with high dynamic pressure response was similar to the instability frequency range measured in the same combustor, and in particular, the response of the system depends greatly on the location of the acoustic forcing source term.

A Study on the Oil Inertia Effect and Frequency Response Characteristics of a Servo Valve-Metering Cylinder System (서보밸브-미터링 실린더 시스템의 오일 관성효과와 주파수 응답 특성에 관한 연구)

  • Yun, Hongsik;Kim, SungDong
    • Journal of Drive and Control
    • /
    • v.18 no.2
    • /
    • pp.9-19
    • /
    • 2021
  • The spool displacement signal of a directional control valve, including the servo valve, can be considered as the standard signal to measure dynamic characteristics. When the spool displacement signal is not available, the velocity signal of a metering cylinder piston can be used. In this study, the frequency response characteristics of the metering cylinder are investigated for the spool displacement input. The transfer functions of the servo valve-metering system are derived taking into consideration the oil inertia effect in the transmission lines. The theoretical results of the transfer functions are verified through computer simulations and experiments. The oil inertia effect in the transmission lines was found to have a very significant effect on the bandwidth frequency of the servo valve-metering cylinder system. In order to more precisely measure the dynamic characteristics of a servo valve, the metering cylinder should be set up to minimize the oil inertia effect by increasing the inner diameters of the transmission lines or shortening their lengths.

Aging Effect on Charge Sensitivity and Frequency Response of PZT Ceramics (PZT 세라믹스의 전하감도와 주파수 응답특성에 대한 경시변화 효과)

  • 신병철;임종인;윤만순;박병학;백성기
    • Journal of the Korean Ceramic Society
    • /
    • v.26 no.4
    • /
    • pp.588-590
    • /
    • 1989
  • Charge sensitivity and its frequency response characteristics were measured in poled and aged lead zirconate titanate(PZT) ceramics prepared by sintering. Aged PZT has lower charge sensitivity and lower mounted resonance frequency than just poled PZT.

  • PDF