• Title/Summary/Keyword: Frequency modulated continuous wave

Search Result 94, Processing Time 0.16 seconds

Studies on IF noise caused by transmitter signal leakages of the W-band homodyne FMCW radar with a single antenna configuration (단일 안테나를 사용하는 W-대역 호모다인 FMCW 레이더의 누설신호에 의한 IF 잡음에 관한 연구)

  • Park Jung-Dong;Kim Wan-Joo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.7 s.337
    • /
    • pp.49-56
    • /
    • 2005
  • In this paper, we describe a solution to improve the effects of the transmitter leakage signals on the frequency modulated continuous wave (FMCW) radar with a single antenna configuration. We analyze characteristics of the IF noise caused by insufficient isolation between transmitter and receiver. The magnitude of the intermediate frequency (IF) noise from a front-end can be reduced by matching the LO signal delay time with that of the largest leakage source. Because the IF noise has periodic singularities at nT$_{m}$/2, t=0,1,2$\cdots$, we find that spectrum of the IF noise due to the leakage signals is very similar to that of the VCO moduation signal except low frequency elements in the vicinity of DC. Based on the studies, we fabricated a W-band homodyne FMCW radar sensor and verified the proposed solution. The results are applicable to design of the homodyne FMCW radar with a single antenna configuration.

Joint Range and Angle Estimation of FMCW MIMO Radar (FMCW MIMO 레이다를 이용한 거리-각도 동시 추정 기법)

  • Kim, Junghoon;Song, Sungchan;Chun, Joohwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.2
    • /
    • pp.169-172
    • /
    • 2019
  • Frequency-modulated continuous wave(FMCW) radars with array antennas are widely used because of their light weight and relatively high resolution. A usual approach for the joint range and angle estimation of a target using an array FMCW radar is to create a range-angle matrix with the deramped received signal, and subsequently apply two-dimensional(2D) frequency estimation methods such as 2D fast Fourier transform on the range-angle matrix. However, such frequency estimation approaches cause bias errors since the frequencies in the range-angle matrix are not independent. Therefore, we propose a new maximum likelihood-based algorithm for joint range and angle estimation of targets using array FMCW radar, and demonstrate that the proposed algorithm achieves the Cram?r-Rao bounds, both for range as well as angle estimation.

Analysis of a Target's Power-Spill Patterns Using Squint SAR Images (Squint SAR 영상 내 목표물 분산전력패턴 분석기법)

  • Hwang, Ji-Hwan;Kim, Duk-Jin;Lee, Seung-Chul;Han, Seung-Hoon;Cho, Jae-Hyoung;Moon, Hyoi
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.9
    • /
    • pp.722-730
    • /
    • 2018
  • This paper presents an analysis technique for estimating the properties of a target's power-spill patterns observed in reconstructed SAR images, which in turn depend on the setup squint angle of the FMCW signal-based SAR system. The target responses observed in the reconstructed SAR images were affected by the range-direction and azimuth-direction of a wave projected on the ground, and the obtained results were analyzed by applying three-dimensional squinted SAR geometry. Furthermore, the rotation patterns were verified through simulations based on the FMCW signal model and back-projection algorithm. This paper summarizes the obtained evaluation results as a function of SAR geometry and squint angle.

FMCW Radar simulation model with interference using a new radar performance parameter (새로운 레이더 성능지표를 이용한 FMCW 레이더 간섭 시뮬레이션 모델)

  • Mun, Sang-Kon;Park, Seung-Keun;Yang, Hoon-Gee;Cheon, Chang-Yul;Chung, Young-Seek;Bae, Kyung-Bin
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.10 no.4
    • /
    • pp.86-92
    • /
    • 2011
  • ITS(Intelligent Transport System) has been researched actively to guarantee the smooth traffic and the safety of the vehicle. In recent, as the sensor for the measurement of distance between vehicles, the FMCW radar system in millimeter wave band has been interested in ITS. Actually, 47, 60, 77, 94 and 139 GHz have been assigned for the vehicle radar frequencies in Europe and Japan. However, the performances of the FMCW radar are deteriorated due to the interferences from the surrounding radars and mobile devices. In this paper, in order to model and simulate the performance of FMCW radar under the exterior interference, we propose a new performance parameter, RER(Radius Error Rate), which contains the information of the range error due to the interferences, and show the effectiveness of the proposed parameter.

Design of K-Band Radar Transceiver for Tracking High Speed Targets (고속 표적 추적을 위한 K-대역 레이다 송수신기 설계)

  • Sun, Sun-Gu;Lee, Jung-Soo;Cho, Byung-Lae;Lee, Jong-Min
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.11
    • /
    • pp.1304-1310
    • /
    • 2010
  • This study is to design FMCW radar transceiver of K-band which is used to detect and track approaching high speed targets with low altitude. The transmitter needs high output power due to small RCS targets and wide beamwidth of transmit antenna. Multi-channel receivers are required to detect and track targets by interferometer method. Transmitter consists of high power amplifier, waveguide switch, and frequency up-converter. Receiver is composed of five channel receivers, up and down converters, X-band local oscillator and waveform generator. Before manufacturing it, the proposed architecture of transceiver is proved by modeling and simulation using several parameters. Then, it is manufactured by using industrial RF components. The performance parameters are measured through experiment. In the experiment, transmitting power and receiver gain were measured with 39.64 dBm and 29.1 dB, respectively. All other parameters in the specification were satisfied as well.

Implementation of Voltage Control Dielectric Resonator Oscillator for FMCW Radar (FMCW 레이더용 전압제어 유전체 발진기의 구현)

  • 안용복;박창현;김장구;조현식;강상록;한석균;최병하
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.10a
    • /
    • pp.398-402
    • /
    • 2003
  • In this paper, a VCDRO(Voltage Control Dielectric Resonator Oscillator) applied to FMCW(Frequency Modulated Continuous Wave)Radar as stable source is implemented and constructed with a MESFET for low noise, a dielectric resonator of high frequency selectivity, and high Q varator diode to obtain a good phase noise performance and stable sweep characteristics. The designed circuits is simulated thrash harmonic balance simulation technique to provide the optimum performance. The measured result of a fabricated VCDRO shows that output is 2.22dBm at 12.05GHz, harmonic suppression -30dBc, phase noise -130dBc at 100kHz offset, and sweep range of varator diode $\pm$18.7MHz, respectively. This oscillator will be available to FMCW Radar.

  • PDF

Implementation of Signal Processing Algorithms for an FMCW Radar Altimeter (FMCW 전파고도계의 신호처리 알고리즘 구현)

  • Choi, Jae-Hyun;Jang, Jong-Hun;Lee, Jae-Hwan;Roh, Jin-Eep
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.6
    • /
    • pp.555-563
    • /
    • 2015
  • This paper presents signal processing algorithms of a frequency-modulated continuous-wave(FMCW) radar altimeter and provides a practical assessment technique. The radar altimeter is initially operated in search mode, when the radar altimeter detects a valid altitude, search mode is switched to track mode and a altitude being tracked is displayed. The sweep bandwidth in each mode is a function of altitude to narrow the beat frequency bandwidth. In addition, transmit power and receiver gain in each mode are controlled to compensate for the dynamic range of wide altitude range. To assess more realistic operation, the radar altimeter was tested using the crane setup. The crane test demonstrated that signal processing algorithms described in this paper resulted in a reduced measurement error rate.

Design of MUSIC-based DoA Estimator for Bluetooth Applications (Bluetooth 응용을 위한 MUSIC 알고리즘 기반 DoA 추정기의 설계)

  • Kim, Jongmin;Oh, Dongjae;Park, Sanghoon;Lee, Seunghyeok;Jung, Yunho
    • Journal of IKEEE
    • /
    • v.24 no.1
    • /
    • pp.339-346
    • /
    • 2020
  • In this paper, we propose an angle estimator that is designed to be applied to Bluetooth low-power application technology based on multiple signal classification (MUSIC) algorithm, and present the result of implementation in FPGA. The MUSIC algorithm is designed for H/W high-speed design because it requires a lot of calculations due to high accuracy, and the snapshot variable is designed to cope with various resolution requirements of indoor systems. As a result of the implementation with Xilinx zynq-7000, it was confirmed that 9,081 LUTs were implemented, and it was designed to operate at =the operating frequency of 100MHz.

A Study on Accuracy Improvement for Range and Velocity Estimates in a FM-CW Radar (FM-CW 레이다에서의 거리 및 속도 추정 정확도 향상에 관한 연구)

  • Lee, Jong-Gil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.8
    • /
    • pp.1752-1758
    • /
    • 2010
  • A FM-CW radar is used for the various purposes as a remote sensing device since it has the advantages of the relatively simple implementation and the low probability of signal interception. A FM-CW radar uses the same frequency modulated continuous wave for both transmission and demodulation. Therefore, the received beat frequency represents the range and Doppler information of targets. However, using the conventional FFT method, the degree of accuracy and resolution in the spectrum estimation can be seriously degraded in the detection and tracking of fast moving targets because of the short dwell time. Therefore, in this paper, the model parameter estimation methods called as an autoregressive method is applied to overcome these problems and showed that the improved accuracy and resolution can be obtained for the target range and velocity estimation.

X-Band FMCW RADAR Signal Processing for small ship (소형선박용 X-Band FMCW 레이더 신호처리부 설계 및 구현)

  • Kim, Jeong-Yeon;Chong, Kil-To;Kim, Tae-Yeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.11
    • /
    • pp.3121-3129
    • /
    • 2009
  • Conventional marine radar systems utilize pulse radar which is capable of high-power transmissions and is effective for remote detection purposes. A pulse radar is most commonly used on medium or large vessels due to its expensive installation and maintenance costs. I propose the use of a Frequency Modulated Continuous Wave (FMCW) radar system operated at low-power and high-resolution instead of the conventional pulse-radar based system. The transmitted and received signals of the FMCW radar system were theoretically analyzed and radar signal processing design and simulation experiments were performed to detect the range and speed. Intermediate Frequency (IF) signal mixed with virtual transmit and receive signals were generated to perform FMCW radar signal processing simulations where the IF signal underwent noise reduction through a lowpass filter. The maximum frequency was derived through the sample interval of the FFT size instead of using A/D converter. This maximum frequency was used to get the frequency range and frequency speed which were in turn used to calculate the range and speed. The virtual beat frequency generated using MATLAB is utilized to analyze the beat frequency used in the actual FMCW radar system signal processing. The differences in the range and speed of the beat frequency signals are processed and analyzed.