• Title/Summary/Keyword: Frequency mitigation

Search Result 311, Processing Time 0.022 seconds

Impacts of Carbon Neutrality and Air Quality Control on Near-term Climate Change in East Asia (탄소중립과 대기질 개선 정책이 동아시아 근 미래 기후변화에 미치는 영향)

  • Youn-Ah Kim;Jung Choi;Seok-Woo Son
    • Atmosphere
    • /
    • v.33 no.5
    • /
    • pp.505-517
    • /
    • 2023
  • This study investigates the impacts of carbon neutrality and air quality control policies on near-term climate change in East Asia, by examining three Shared Socioeconomic Pathways (SSPs) scenarios from five climate models. Specifically, low carbon and strong air quality control scenario (SSP1-1.9), high carbon and weak air quality control scenario (SSP3-7.0), and high carbon and strong air quality control scenario (SSP3-7.0-lowNTCF) are compared. For these scenarios, the near-term climate (2045-2054 average) changes are evaluated for surface air temperature (SAT), hot temperature extreme intensity (TXx), and hot temperature extreme frequency (TX90p). In all three scenarios, SAT, TXx, and TX90p are projected to increase in East Asia, while carbon neutrality reduces the increasing rate of SAT and hot temperature extremes. Air quality control strengthens the warming rate. These opposed mitigation effects are robustly forced in all model simulations. Nonetheless, the impact of carbon neutrality overcomes the impact of air quality control. These results suggest that fast carbon neutrality, more effective than an air quality control policy, is necessary to slowdown future warming trend in East Asia.

Earthquake Monitoring : Future Strategy (지진관측 : 미래 발전 전략)

  • Chi, Heon-Cheol;Park, Jung-Ho;Kim, Geun-Young;Shin, Jin-Soo;Shin, In-Cheul;Lim, In-Seub;Jeong, Byung-Sun;Sheen, Dong-Hoon
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.3
    • /
    • pp.268-276
    • /
    • 2010
  • Earthquake Hazard Mitigation Law was activated into force on March 2009. By the law, the obligation to monitor the effect of earthquake on the facilities was extended to many organizations such as gas company and local governments. Based on the estimation of National Emergency Management Agency (NEMA), the number of free-surface acceleration stations would be expanded to more than 400. The advent of internet protocol and the more simplified operation have allowed the quick and easy installation of seismic stations. In addition, the dynamic range of seismic instruments has been continuously improved enough to evaluate damage intensity and to alert alarm directly for earthquake hazard mitigation. For direct visualization of damage intensity and area, Real Time Intensity COlor Mapping (RTICOM) is explained in detail. RTICOM would be used to retrieve the essential information for damage evaluation, Peak Ground Acceleration (PGA). Destructive earthquake damage is usually due to surface waves which just follow S wave. The peak amplitude of surface wave would be pre-estimated from the amplitude and frequency content of first arrival P wave. Earthquake Early Warning (EEW) system is conventionally defined to estimate local magnitude from P wave. The status of EEW is reviewed and the application of EEW to Odesan earthquake is exampled with ShakeMap in order to make clear its appearance. In the sense of rapidity, the earthquake announcement of Korea Meteorological Agency (KMA) might be dramatically improved by the adaption of EEW. In order to realize hazard mitigation, EEW should be applied to the local crucial facilities such as nuclear power plants and fragile semi-conduct plant. The distributed EEW is introduced with the application example of Uljin earthquake. Not only Nation-wide but also locally distributed EEW applications, all relevant information is needed to be shared in real time. The plan of extension of Korea Integrated Seismic System (KISS) is briefly explained in order to future cooperation of data sharing and utilization.

Evaluation of Droughts in Seoul Using Two-Dimensional Drought Frequency Analysis (이차원 가뭄빈도해석을 통한 서울지역의 가뭄 평가)

  • Yeon, Je-Mun;Byun, Sung-Ho;Lee, Jung-Kyu;Kim, Tae-Woong
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.4
    • /
    • pp.335-343
    • /
    • 2007
  • Drought characteristics need to be preceded before establishing a drought mitigation plan. In this study, using a Standardized Precipitation Index (SPI), a hydrologic drought was defined as an event during which the SPIs are continuously below a certain truncation level. Then, a methodology of drought frequency analysis was performed to quantitatively characterize droughts considering drought duration and severity simultaneously. The theory of runs was used to model drought recurrence and to determine drought properties like duration and severity. Short historical records usually do not allow reliable bivariate analyses. However, more than hundred years of precipitation data (1770 ${\sim}$ 1907) collected in Chosun Kingdom Age using an old Korean rain gage called Chukwooki can provide valuable information about past events. It is shown that a bivariate gamma distribution well represented the joint probabilistic properties of Korean drought duration and severity. The overall results of this study show that the proposed bivariate drought frequency analysis overcomes the drawbacks of the conventional univariate frequency analysis by providing a consistent representation of the drought recurrent property.

Empirical Application for the Urban Disaster Risk Assessment : Fire, Facility and Escape Cases in Cheongju City (도시 재해위험도 평가 모형 연구 - 화재, 시설, 피난위험도 중심의 청주시 사례 -)

  • Hwang, Hee-Yun;Baek, Ki-Young;Park, Byung-Ho;Lee, Man-Hyung;Hwang, Jae-Hoon;Ryu, Eul-Leal;Kim, Tae-Hwan
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.1 no.2 s.2
    • /
    • pp.123-137
    • /
    • 2001
  • Based on basic characteristics of urban disasters and their data availabilities in Korea, this study provides risk assessment models which are derived from Cheongju examples. In specific, the application models are confined to fire, facility and escape risk survey results in the paper. For the assessment criteria, major independent variables for the categories of fire include both the frequency levels and the amount of damage. And the degree of facility risk assessment is heavily hinged on both the weighted values of key facilities and their weighted rank-sizes. In the same context, the degree of escape risk assessment is hinged on both the weighted values and the amount of the classification of land. From the empirical configuration, this paper presents that the potential figure of fire risk is relatively higher in the built-up areas within the existing Central Business District where accommodates a number of dilapidated housing units and community-supportive facilities. In contrast, the potential figure of facility and escape risk is higher in both old residential areas and the newly-built apartment complex. In short, the CBD and its neighboring residential areas record a high potential figure in terms of total risk, juxtaposing fire, facility and escape risk all together.

  • PDF

An Experimental Study on the dynamic behavior of 4-Span Cable-Stayed Bridge with ${\pi}$-Type Girder (${\pi}$형 거더를 가진 4경간 사장교의 동적거동에 관한 실험적 연구)

  • Cho, Jae-Young;Kim, Young-Min;Lee, Hak-Eun;Yoon, Ki-Yong
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.4 no.1 s.12
    • /
    • pp.15-24
    • /
    • 2004
  • Generally, a ${\pi}$-type girder composed of two I-type girders is known to have a significant disadvantage in wind resistance design because of aerodynamic instability. A representative bridge for this girder was Tacoma Narrows Bridge. Since Tacoma Narrows Bridge had very low stiffness of the bridge structure and its cross-section shape had aerodynamic instability, the bridge collapsed after severe torsion and vibration events in 19m/s wind speed. Aerodynamic vibration can be avoided by enhancing structural stiffness and damping factor and conducting a study of cross-section shapes. This study shows the angle of attack for the four-span cable stayed bridge having ${\pi}$-type cross-section and describes the aerodynamic characteristics of the changed cross-section with aerodynamic vibration damping additions, by carrying out two-dimension vibration tests. As a result of uniform flow and turbulent flow, the study shows that because the basic ${\pi}$-type cross-section alone can have efficient wind resistant stability, there is no need to have additional aerodynamic damping equipment. Since this four 230m-main-span bridge has a large frequency and also has a big stiffness compared to other bridges containing a similar cross-section, it has aerodynamic stability under the design wind speed.

A study of Assessment for Internal Inundation Vulnerability in Urban Area using SWMM (SWMM을 이용한 도시지역 내수침수 취약성 평가)

  • Shon, Tae-Seok;Kang, Dong-Ho;Jang, Jong-Kyung;Shin, Hyun-Suk
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.4
    • /
    • pp.105-117
    • /
    • 2010
  • The topographical depressions in urban areas, the lack in drainage capability, sewage backward flow, road drainage, etc. cause internal inundation, and the increase in rainfall resulting from recent climate change, the rapid urbanization accompanied by economic development and population growth, and the increase in an impervious area in urban areas deteriorate the risk of internal inundation in the urban areas. In this study, the vulnerability of internal inundation in urban areas is analyzed and SWMM model is applied into Oncheoncheon watershed, which represents urban river of Busan, as a target basin. Based on the results, the representative storm sewers in individual sub-catchments is selected and the risk of vulnerability to internal inundation due to rainfall in urban streams is analyzed. In order to analyze the risk and vulnerability of internal inundation, capacity is applied as an index indicating the volume of a storm sewer in the SWMM model, and the risk of internal inundation is into 4 steps. For the analysis on the risk of internal inundation, simulation results by using a SMMM model are compared with the actual inundation areas resulting from localized heavy rain on July 7, 2009 at Busan and comparison results are analyzed to prove the validity of the designed model. Accordingly, probabilistic rainfall at Busan was input to the model for each frequency (10, 20, 50, 100 years) and duration (6, 12, 18, 24hr) at Busan. In this study, it suggests that the findings can be used to preliminarily alarm the possibility of internal inundation and selecting the vulnerable zones in urban areas.

Identifying Characteristics of Incidents at Hazardous Material Facilities

  • Kim, Geun-Young;Kim, Sang-Won;Won, Jai-Mu
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.6
    • /
    • pp.51-56
    • /
    • 2009
  • Safety and quality assessment systems are very important in manufacture, storage, transportation, and handling of hazardous materials(hazmat) to prevent hazmat disasters. At present, hazardous materials exist everywhere in our daily lives with various forms of plastics, household products of cleaning and washing detergents, fertilizers or petroleum-related products. However, hazardous materials are dangerous substances when they are released to human or environment. Hazardous materials become very widely used substances in the age of oil-based industrial economy. The Korean Ministry of Environment (KMOE) describes about one hundred thousand types of chemicals are produced and used worldwide. Over four hundred new chemicals are introduced in every year. A crucial question for the Korean hazardous material management may have been raised: Will you be safe from hazardous material incidents? The gas leak disaster at Union Carbide's Bhopal, India in 1984 that made over 6,400 people killed and 30,000 to 40,000 people seriously injured is the representative case for the safety of hazmat. Korea becomes vulnerable to hazmat disaster due to the development of high-tech industry. Thus, the risk assessment system is required to Korea for transferring abandoned hazmat management systems to self-correcting safety systems. This research analyzed characteristics of various hazmat incidents applying statistical analysis methods including frequency analysis or analysis of category data to hazmat incidents for ten years. All of three analyses of category data indicate the significance of causality between hazmat incident site groups and seasons, regional groups, and incident casualty groups.

Factors Influencing the Continuity of Volunteer Activities for Disaster Relief (재해구호 자원봉사활동의 지속성에 영향을 미치는 요인)

  • Kwon, Young-Sub;Chung, Soon-Dool
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.3
    • /
    • pp.75-79
    • /
    • 2009
  • The purposes of this study were to find out the factors affecting the continuous participation of volunteer activities for disaster relief and to provide implications for the efficient management of sustainable disaster relief volunteer activities. In order to achieve these purposes, we investigated how much individual characteristics, the volunteer attitude and motivation, and institutional characteristics, respectively, affect the duration of disaster relief volunteer activities. The research was carried out targeting 261 disaster relief volunteer workers, aged over 20, who affiliated to various volunteer centers. Data were collected by survey methodology from May 7th to May 27th, 2008. A frequency analysis and a multiple regression were utilized for analyzing data. The results of this study were as follows: the continuity of volunteer activities of the subjects are likely to be high when they are older, have a job, are highly motivated, are assigned properly to the placement and task. Based on the results of this study, some practical implications were suggested. First, since placement and task assignment managed by volunteer organizations are very important for the continuity of volunteer activities, those organizations should have developed diverse volunteer activity programs considering volunteers' characteristics and interest. Second, the managers of those organizations need to sufficiently consider the characteristics of volunteers such as age and job when dispatching volunteers in disaster areas. The managers should help their volunteers to immerse in their volunteer work. Finally, it is necessary to induce social concern and support in disaster relief volunteer activities in order to make volunteers especially with jobs be constantly active in disaster relief activities.

Analysis of the Actual State of Direction Guidance System on Road Traffic Signs in Urban Area -Centering around Suwon City- (도시부 도로안내표지의 지명정보 전달체계 실태분석 - 경기도 수원시를 중심으로 -)

  • Yoon, Hyo-Jin;Park, Mi-So
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.6 no.1 s.20
    • /
    • pp.29-38
    • /
    • 2006
  • There are increasing needs to provide sufficient information on road directions through road signs for expanding cities and traffic networks. Improving efficiency of direction guidance information from road signs not only requires criteria for but also systematic approach to selecting place names that appear on road signs. As such, this paper looks at road direction information from existing road signs that leads to Suwon and investigates whether the current system of road signs provides efficient, systematic and continuous direction information for road users to easily reach their destination. In this paper, Suwon's city hall is set up as the final destination, which is linked from five other cities, Anyang, Osan, Ansan, Yongin and Seongnam. The paper attempts to find out whether there is continuity and suitable number of road signs for direction information by analyzing the road signs between these 5 cities and Suwon with respect to direction, direction advance notice and direction guidance. It is found that drivers cannot easily find the needed information on their destination from the existing road signs and that continuity of selected place names that systematically appear on road signs is insufficiency. In addition, direction guidance on road signs is problematic, because the appearance frequency of road signs is not adequate and the continuity of road signs is not effective. Moreover, there is insufficient information on local direction guidance for immediate destinations on road signs with respect to turning left or right or going straight.

Analysis of Inundation Characteristics for EAP of Highway in Urban Stream - Dongbu Highway in Jungrang Stream - (도시하천도로의 EAP수립을 위한 침수특성분석 - 중랑천 동부간선도로를 중심으로 -)

  • Lee, Jong-Ta;Jeon, Won-Jun;Hur, Sung-Chul
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.6 no.3 s.22
    • /
    • pp.69-76
    • /
    • 2006
  • An hydraulic and hydrologic analysis procedure was proposed to reduce the inundation damage of highway in urban stream, that could contribute the EAP and Traffic control planning of Dongbu highway in the Jungrang stream basin which is one of the representative urban area in Korea. We performed the HEC-HMS runoff analysis, and the UNET unsteady flow modeling to decide the inundation reaches and their characteristics. The high inundation risk areas were of Emoon railway bridge and the Wollueng bridge, which are inundated in the case of 10 year and 20 year frequency flood respectively. We also analyze the inundation characteristics under the various conditions of the accumulation rainfall and the duration. Flood elevation at the Wolgye-1 bridge exceed over Risk Flood Water Level(EL.17.84 m) when the accumulation rainfall is over 250 mm and shorter duration than 7 hr. When neglecting backwater effect from the Han river, inundation risk are highly at the reach C2(Wolgye-1 br. ${\sim}$Jungrang br., left bank), C1(Wolgye-1 br. ${\sim}$Jungrang br., right bank), D(Jungrang br. ${\sim}$Gunja br.) in order, but when consider the effect, the inundation risk are higher than the others at the reach D2(Jungrang br. ${\sim}$Gunja br., left bank) and E(Gunja br. ${\sim}$Yongbi br.), which are located downstream near confluence.