• Title/Summary/Keyword: Frequency estimate

Search Result 1,751, Processing Time 0.025 seconds

Location Estimation of Satellite Radio Interferer Using CAF Map (CAF Map을 이용한 위성전파 혼신원의 위치추적)

  • Kang, Chul-Gyu;Oh, Chang-Heon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.05a
    • /
    • pp.718-721
    • /
    • 2011
  • In this paper, cross ambiguity function map is proposed to estimate the location of a unknown interferer which emits the harmful radio in the satellite communication network. To estimate the interferer, a time difference between received radio signals at earth stations and a frequency difference caused by the movement of interferers or receiving earth stations are calculated. Therefore, cross ambiguity function is used to calculate that values. The calculating process of the time and the frequency differences using cross ambiguity function is operated at every designated time then the correlation values between the time and frequency are calculated. After calcuation, the final location of the harmful interferer is estimated. From the simulation results, about 800 m distance error is occurred at 10~4 dB of $E_b/N_0$ and about 13 km distance errer is occurred at -20 dB of $E_b/N_0$.

  • PDF

The Low Probability of Intercept RADAR Waveform Based on Random Phase and Code Rate Transition for Doppler Tolerance Improvement (도플러 특성 개선을 위한 랜덤 위상 및 부호율 천이 기반 저피탐 레이다 파형)

  • Lee, Ki-Woong;Lee, Woo-Kyung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.11
    • /
    • pp.999-1011
    • /
    • 2015
  • In modern electronic warfare, RADAR is under constant threat of ECM(Electronic Counter Measures) signals from nearby jammers. The conventional linear frequency modulated(Linear-FM) waveform is easy to be intercepted to estimate its signal parameters due to its periodical phase transition. Recently, APCN(Advanced Pulse Compression Noise) waveform using random amplitude and phase transition was proposed for LPI(Low probability of Intercept). But random phase code signals such as APCN waveform tend to be sensitive to Doppler frequency shift and result in performance degradation during moving target detection. In this paper, random phase and code rate transition based radar waveform(RPCR) is proposed for Doppler tolerance improvement. Time frequency analysis is carried out through ambiguity analysis to validate the improved Doppler tolerance of RPCR waveform. As a means to measure the vulnerability of the proposed RPCR waveform against LPI, WHT(Wigner-Hough Transform) is adopted to analyze and estimate signal parameters for ECCM(Electronic Counter Counter Measures) application.

Design of Uplink Initial Ranging Algorithm for Large-Cell Coverage Fixed Wireless Communication System (광범위 고정형 무선 통신 시스템을 위한 상향 링크 초기 레인징 기법 설계)

  • Lee, Kyung-Hoon;Hwang, Won-Jun;Choi, Hyung-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.7A
    • /
    • pp.569-580
    • /
    • 2012
  • In this paper, an enhanced initial ranging algorithm for large-cell coverage fixed wireless communication system is proposed. In typical wireless communication system such as WiBro, because a round-trip delay between a transmitter and a receiver is within one OFDM (Orthogonal Frequency Division Multiplexing) symbol duration, a frequency-domain differential correlation method is generally used. However, the conventional method cannot be applied due to an increase of a maximum time delay in large-cell system. In case of an accumulative differential method, estimation errors can occur because of frequent sign transitions. In this paper, therefore, we propose an algorithm which can estimate a total timing offset in a ranging channel structure for 15 km cell. The proposed method can improve performance by sign comparison based sign error correction rule between the estimated values and using a weighting scheme based on channel correlation, the number of accumulations, and the noise reduction effect in normalization process. Also, it can estimate the integer timing offset of symbol duration by comparing peak-powers after compensating for the fractional timing offset of symbol duration.

Derivation of Intensity-Duration-Frequency and Flood Frequency Curve by Simulation of Hourly Precipitation using Nonhomogeneous Markov Chain Model (비동질성 Markov 모형의 시간강수량 모의 발생을 이용한 IDF 곡선 및 홍수빈도곡선의 유도)

  • Choi, Byung-Kyu;Oh, Tae-Suk;Park, Rae-Gun;Moon, Young-Il
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.3
    • /
    • pp.251-264
    • /
    • 2008
  • In this study, a nonhomogeneous markov model which is able to simulate hourly rainfall series is developed for estimating reliable hydrologic variables. The proposed approach is applied to simulate hourly rainfall series in Korea. The simulated rainfall is used to estimate the design rainfall and flood in the watershed, and compared to observations in terms of reproducing underlying distributions of the data to assure model's validation. The model shows that the simulated rainfall series reproduce a similar statistical attribute with observations, and expecially maximum value is gradually increased as number of simulation increase. Therefore, with the proposed approach, the non-homogeneous markov model can be used to estimate variables for the purpose of design of hydraulic structures and analyze uncertainties associated with rainfall input in the hydrologic models.

Estimation of Hydraulic Conductivity of Soils Based on Biot's Theory of Wave Propagation (Biot 파동전파 이론을 이용한 지반의 투수계수 산정)

  • Song, Chung R.;Kim, Jinwon;Koocheki, Kianoosh
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.12
    • /
    • pp.7-16
    • /
    • 2020
  • This study presents an acoustic technique to estimate the hydraulic conductivity of soils. Acoustic attenuation and propagation velocity spectra were measured for dry and saturated sandy specimens to confirm that the relationship between Biot's characteristic frequency and its associated hydraulic conductivity exists only for saturated soils. From the experiments presented in this paper, both attenuation-based and propagation-velocity-based techniques resulted in almost identical characteristic frequencies for saturated soils. The propagation velocity based measurements, however, show a a a slightly clearer trend compared to the attenuation based measurements. The results also show that the acoustically estimated hydraulic conductivities of soils agree well with constant head laboratory test results, demonstrating that this acoustic technique can be a useful nondestructive tool to estimate the hydraulic conductivity of sandy or silty soils.

The estimation of cholesterol intake in elderly: reliability and validity of short, Semi-Quantitative Food Frequency Questionnaire (SQ-FFQ)

  • Nindya, Triska Susila;Mahmudiono, Trias;Rachmah, Qonita
    • Journal of Nutrition and Health
    • /
    • v.54 no.1
    • /
    • pp.95-103
    • /
    • 2021
  • Purpose: High intake of cholesterol leads to cardiovascular disruption. Estimating the actual intake of cholesterol can be beneficial for nutrition intervention. This research aimed to develop Semi-Quantitative Food Frequency Questionnaire (SQ-FFQ) to estimate cholesterol intake and analyze its reliability and validity. Methods: SQ-FFQ was developed by sorting high cholesterol food items in Indonesian food database and food items' availability. A total of 30 older adults were randomly chosen from Public Health Center in Jagir District, Surabaya, Indonesia to test its validity. Reliability test was done by measuring the same developed SQ-FFQ in one-month period, while validity test was done by comparing SQ-FFQ results with 6-days food record. Statistical analysis used for reliability test was paired t-test, the Intra-class Correlation Coefficient (ICC), and Cronbach's α to measure the internal consistency. Meanwhile, validity of developed SQ-FFQ was analyzed using paired t-test and Bland-Altman. Results: Reliability of 2 administered SQ-FFQs showed a good agreement based on paired t-test analysis (p = 0.200), ICC (0.609), and Cronbach's α (0.757). Strong agreement was found in most of food items, but agreements for egg yolk and fried duck were poor. Significant difference was found between those food items (p = 0.001 vs. p < 0.001, respectively) with mean difference were -25.3 mg and 46.2 mg. Validity of developed SQ-FFQ2 compared to 6-days food diary records also found a strong agreement based on paired t-test and the Bland-Altman analysis. Conclusion: This baseline research provides a reasonably valid and repeatable measure of cholesterol intake estimation that can be widely used in nutrition and public health study, especially in Indonesia. No study has been conducted in Indonesia on the development of tools to estimate the cholesterol intake.

Estimation Techniques for Sampling Frequency Offset in OFDM Systems (OFDM 시스템의 샘플링 주파수 옵셋 추정기법)

  • 전원기;조용수
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.9B
    • /
    • pp.1795-1805
    • /
    • 1999
  • In an OFDM (Orthogonal Frequency-Division Multiplexing) system, the sampling frequency offset between the transmitter and receiver is known to cause the interchannel interference (ICI), resulting in performance degradation. In this paper, we propose two time-domain techniques to estimate the sampling frequency offset, especially for a high data-rate OFDM system. The first technique estimates the sampling frequency offset by using the phase difference between two received samples with a fixed amount of time interval, corresponding to the transmitted training symbol, under the assumption of perfect symbol and carrier offset synchronization. The second technique estimates the sampling frequency offset and carrier frequency offset jointly, when the two offsets exist together, by using two training symbols with different frequency components and using a sample algebraic calculation. The proposed estimation techniques for sampling frequency offset cause no time delay due to all time-domain processing, and have a good performance due to no ICI effect. The performances of the proposed techniques are demonstrated by various simulations.

  • PDF

Resonant Frequency Estimation of Reradiation Interference at MF from Power Transmission Lines Based on Generalized Resonance Theory

  • Bo, Tang;Bin, Chen;Zhibin, Zhao;Zheng, Xiao;Shuang, Wang
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.1144-1153
    • /
    • 2015
  • The resonant mechanism of reradiation interference (RRI) over 1.7MHz from power transmission lines cannot be obtained from IEEE standards, which are based on researches of field intensity. Hence, the resonance is ignored in National Standards of protecting distance between UHV power lines and radio stations in China, which would result in an excessive redundancy of protecting distance. Therefore, based on the generalized resonance theory, we proposed the idea of applying model-based parameter estimation (MBPE) to estimate the generalized resonance frequency of electrically large scattering objects. We also deduced equation expressions of the generalized resonance frequency and its quality factor Q in a lossy open electromagnetic system, i.e. an antenna-transmission line system in this paper. Taking the frequency band studied by IEEE and the frequency band over 1.7 MHz as object, we established three models of the RRI from transmission lines, namely the simplified line model, the tower line model considering cross arms and the line-surface mixed model. With the models, we calculated the scattering field of sampling points with equal intervals using method of moments, and then inferred expressions of Padé rational function. After calculating the zero-pole points of the Padé rational function, we eventually got the estimation of the RRI’s generalized resonant frequency. Our case studies indicate that the proposed estimation method is effective for predicting the generalized resonant frequency of RRI in medium frequency (MF, 0.3~3 MHz) band over 1.7 MHz, which expands the frequency band studied by IEEE.

Inference of natural flood frequency for the region affected by dams in Nam Han River (남한강 유역 댐 영향 지역의 기본홍수량 추론)

  • Kim, Nam Won;Lee, Jeong Eun;Lee, Jeongwoo
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.7
    • /
    • pp.599-606
    • /
    • 2016
  • The objective of this study is to estimate the unregulated flood frequency from Chungju dam to Yangpyung gauging station for the region affected by dams based on the peak discharges simulated by storage function routing model. From the flood frequency analyses, the quantiles for the unregulated flood frequency at 6 sites have similar pattern to each other, and their averaged quantile almost matched to the result from the regional flood frequency analysis. The quantile and annual mean discharge for the unregulated flood frequency for the downstream of Chungju dam show the similar behaviour to those for the upstream area. While the quantile and the annual mean discharge for the regulated flood frequency are significantly different from those for the unregulated flood frequency. In particular, the qunatile shows severe difference as the return period increases, and the annual mean discharge has a tendency to approach to the natural flood as the distance from dam increases.

Direction finding based on Radon transform in frequency-wavenumber domain with a sparse array (주파수-파수 스펙트럼과 라돈변환을 이용한 희소 배열 기반 방위추정 기법 연구)

  • Choi, Yong Hwa;Kim, Dong Hyeon;Kim, J.S.
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.2
    • /
    • pp.168-176
    • /
    • 2019
  • When an array receives a signal with a frequency higher than the design frequency, there is an ambiguity in beamforming due to spatial aliasing. In order to overcome this problem, Abadi proposed frequency-difference beamforming. However, there is a constraint that the minimum frequency bandwidth is required according to the value of the difference frequency. In this paper, we propose a method to find the direction of the target signal with spatial aliasing based on the frequency-wavenumber spectrum combined with Radon transform. The proposed method can estimate the direction of the target without ambiguities when the signal has nonnegligible bandwidth. We tested the algorithm by simulating a broadband signal and verified the results with the frequency-difference beamforming method using SAVEX15 (Shallow Water Acoustic Variability EXperiment 2015)'s shrimp noise data.