• Title/Summary/Keyword: Frequency equation

Search Result 2,001, Processing Time 0.031 seconds

A multiple scales method solution for the free and forced nonlinear transverse vibrations of rectangular plates

  • Shooshtari, A.;Khadem, S.E.
    • Structural Engineering and Mechanics
    • /
    • v.24 no.5
    • /
    • pp.543-560
    • /
    • 2006
  • In this paper, first, the equations of motion for a rectangular isotropic plate have been derived. This derivation is based on the Von Karmann theory and the effects of shear deformation have been considered. Introducing an Airy stress function, the equations of motion have been transformed to a nonlinear coupled equation. Using Galerkin method, this equation has been separated into position and time functions. By means of the dimensional analysis, it is shown that the orders of magnitude for nonlinear terms are small with respect to linear terms. The Multiple Scales Method has been applied to the equation of motion in the forced vibration and free vibration cases and closed-form relations for the nonlinear natural frequencies, displacement and frequency response of the plate have been derived. The obtained results in comparison with numerical methods are in good agreements. Using the obtained relation, the effects of initial displacement, thickness and dimensions of the plate on the nonlinear natural frequencies and displacements have been investigated. These results are valid for a special range of the ratio of thickness to dimensions of the plate, which is a characteristic of the Multiple Scales Method. In the forced vibration case, the frequency response equation for the primary resonance condition is calculated and the effects of various parameters on the frequency response of system have been studied.

Vibration Analysis of a Beam Having n Through-the-width Splits (다수의 층상균열이 내재하는 보의 진동해석)

  • Hwang, J.K.;Lee, M.H.;Shin, Y.J.;Kim, C.H.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.5
    • /
    • pp.330-337
    • /
    • 2002
  • A frequency equation of beam subjected to the axial load and having ηthrough-the-width-splits is developed. The beam comprises of beam elements that are split into the upper and the lower part, and non-split beam elements. Equations of motion of each beam element are non-dimensionalized with respect to length. The frequency equation of beam is derived from that of each beam element, which satisfies the displacement of the longitudinal and transverse vibration and the boundary conditions between the beam elements. Numerical simulation and experimental work for the beam having several split beam elements are carried out to demonstrate the analytical development and its validity. The experimental results are in good agreement with those of the present frequency equation. The relationships between the split beam width and natural frequencies, and also the relationships between number of split and natural frequencies, in case that the total beam split length is same. are discussed.

A Study on the Pressure Resonance with Combustion Chamber Geometry for a Spark Ignition Engine (스파크 점화기관의 연소실 형상에 따른 공진현상 해석에 관한 연구)

  • Park, Gyeong-Seok;Jang, Seok-Hyeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.12
    • /
    • pp.1905-1910
    • /
    • 2001
  • Pressure resonance frequency that is caused in the combustion chamber can be interpreted by acoustic analysis. Until now the pressure resonance has been assumed and calculated to a disc type combustion chamber that neglected the combustion chamber height because the knock occurs near the TDC(top dead center). In this research FEM(finite element method) has been used to calculate the pressure resonance frequency inside the experimental engine combustion. The error of the resonance frequency obtained by FEM has decreased about 50% compared to the calculation of Draper's equation. Due to the asymmetry in the shape of the combustion chamber that was neglected in Draper's equation we could find out that a new resonance frequency could be generated. To match the experimental results, the speed of sound that satisfies Draper's equation is selected 13% higher than the value for pent-roof type combustion chamber.

Accurate Equation Analysis for RF Negative Resistance circuit at High Frequency Operation Range (고주파수 영역의 정확도 높은 RF 부성저항 회로 분석)

  • Yun, Eun-Seung;Hong, Jong-Phil
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.4
    • /
    • pp.88-95
    • /
    • 2015
  • This paper presents a new analysis of RF negative resistance (RFNR) circuits, known as a negative resistance generator. For accurate equation analysis of RFNR, this study examined the effects of the gate resistance and the source parasitic capacitance of the transistor. In addition, the input admittance of the conventional equation was calculated by looking into the source-terminal of the transistor, whereas that of the proposed equation was calculated by examining the gate-terminal of the transistor. The proposed equation analysis is more accurate than that of the conventional analysis, especially for higher frequency range. This paper verify the accuracy of the proposed analysis at high frequency range using the simulation.

Natural Frequency of L-type Folded Plate (L-형 절곡판의 고유진동수 해석)

  • Lee, Kil-Woo;Chung, Kang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.6 no.3
    • /
    • pp.100-108
    • /
    • 1989
  • The frequency equation and numerical process of natural frequencies for several boundary conditions of L-type folded plate given to the different thickness and lenth are derived by using Rayleigh-Ritz method in this study. Those natural frequencies are attaind by choosing the proper eigenfunction for boundary conditions of x-direction and y-direfction beams, by considering the convergence of numerical results.

  • PDF

Eigenvalue design sensivity analysis of structure using continuum method (연속법에 의한 판구조 고유진동수의 민감도 해석)

  • 이재환;장강석;신민용
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.3-9
    • /
    • 1997
  • In this paper, design sensivity of plate natural frequency is computed for thickness design variables. Once the variational equation is derived from Lagrange quation using the virtual displacement, governing energy bilinear form is obtained and sensivity equation is formulated through the first variation. Natural frequency is obtained using the commercial FEM code and the accuracy of sensivity is verified by finite difference. The accuracy of natural frequency and sensivity improves for the fine mesh model.

  • PDF

A Study on Modifacation of a Prediction Equation for the Natural Frequency of a Composite Deck Floor System through the Simplification of a section Transformation (합성데크 플레이트 바닥구조의 단면환산 단순화를 통한 고유진동수 예측식의 보정에 관한 연구)

  • Im, Ji Hoon;Park, Jin Young;Hong, Won Kee;Kim, Hee Cheul
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.4
    • /
    • pp.549-556
    • /
    • 2002
  • The natural frequency of a system is commonly used in evaluating the serviceability condition of a floor. However. the current equations recommended in many building codes do not consider the various material types of a slab system; thus. different results are observed. Likewise. the transformation of a slab section required to predict the natural frequency of a composite deck plate is complicated. due to the varying shapes of the deck plates. Therefore. a new and simplified method of transforming a composite slab into an equivalent concrete slab is proposed. he modified vibration prediction equation was proposed based on the current vibration prediction equation recommended by LRFD. Compared to other equations. it is the closest to those obtained from experiments. The modified equation provides about 14.3% more accurate results than that recommended by LRFD. Likewise. the applicability of the proposed equation to other types of composite deck plate floor system was validated.

The Characteristics of Pulsating Flow in a Hydraulic Pipe (유압관로에서 맥동유동 특성에 관한 연구)

  • 모양우;유영태;김지화
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.7
    • /
    • pp.653-665
    • /
    • 2001
  • The characteristics of the pulsating flow in a hydraulic pipe have been investigated. It is necessary to study the power control of the power transmission system in the landing gear system of aircraft and the design of robots. In this system, the power transmission pipeline is composed of a hydraulic system, and the operating flow is unsteady flow. The wave equation varying with frequency is analyzed in order to investigate the characteristics of unsteady flow in such a pipe. This wave equation involves the propagation coefficient in terns of frequency and viscosity. The theoretical result of this wave equation are compared with experimental result. Each wave equation, varying with the propagation coefficient, is analyzed theoretically. then, a sinusoidal wave generator is built in order to make better sinusoidal waves, and a rectifier is built to eliminate the noise from the hydraulic pump. The theoretical results of the wave equation in the flow of viscous fluid agree well with experimental results.

  • PDF

Proposal of an Equation for the Evaluation of Discomfort of a Seated Human Body Due to the Differential Vertical Vibration at the Seat and the Floor (시트와 바닥 진동의 위상차가 안락성에 미치는 영향을 평가하기 위한 수식의 제안)

  • 장한기
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.8
    • /
    • pp.626-631
    • /
    • 2002
  • A modified equation for the evaluation of discomfort of a seated human body exposed to differential vibration at the seat and the floor was proposed in this paper. Through the review and analysis of the preceding studies, effect of phase difference between the seat and the floor vibration on discomfort were quantitatively identified. The phase effect was shown to be governed by not only phase difference between the two vibrations but both their frequency and the magnitude, which means the present equation for the evaluation of perceptual amount of vibration provided by ISO 2631-1 should be modified. The proposed equation was developed such that the correction function was multiplied to the present equation. The correction function consisted of three parts, each of them represented the effect by phase difference, frequency and vibration magnitude on discomfort respectively.

Densification of Aggregated Alumina Powder under Cyclin Compaction (반복압축하의 응집된 알루미나 분말의 치밀화)

  • Kim, K.T.;Son, G.S.;Suh, J.
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.2
    • /
    • pp.136-142
    • /
    • 1992
  • The effects of cyclic stress, frequency and bias-pressure on densification of Al2O3 powder cyclic compaction are investigated. The effect of frequency was not significant on densification of Al2O3 powder under cyclic compaction. The higher the cyclic stress and the lower the bias pressure, the higher densification was achieved. To obtain a higher densification, cyclic compaction was more efficient than 1 stroke compaction. A densification equation was proposed to describe an cyclic time dependent pressure-volume relation for Al2O3 powder under cyclic compaction. This equation was obtained empirically, based on the pressure-volume equation proposed by Cooper and Eaton, the time dependent densification equation by Kim and Suh and experimental data for Al2O3 powder under cyclic compaction. The agreement between the proposed equation and experimental data for Al2O3 powder under cyclic compaction was very good.

  • PDF