• Title/Summary/Keyword: Frequency division multiplexing(FDM)

Search Result 7, Processing Time 0.021 seconds

BER Performance of OFDM Combined with TDM Using Frequency-Domain Equalization

  • Gacanin, Haris;Takaoka, Shinsuke;Adachi, Fumiyuki
    • Journal of Communications and Networks
    • /
    • v.9 no.1
    • /
    • pp.34-42
    • /
    • 2007
  • Orthogonal frequency division multiplexing (OFDM) combined with time division multiplexing (TDM), in this paper called OFDM/TDM, can overcome the high peak-to-average-power ratio (PAPR) problem of the conventional OFDM and improve the robustness against long time delays. In this paper, the bit error rate (BER) performance of OFDM/FDM in a frequency-selective Rayleigh fading. channel is evaluated by computer simulation. It is shown that the use of frequency-domain equalization based on minimum mean square error criterion (MMSE-FDE) can significantly improve the BER performance, compared to the conventional OFDM, by exploiting the channel frequency-selectivity while reducing the PAPR or improving the robustness against long time delays. It is also shown that the performance of OFDM/FDM designed to reduce the PAPR can bridge the conventional OFDM and single-carrier (SC) transmission by changing the design parameter.

Radiotelemetry for ECG and Event Signals Using FDM (주파수분할 다중방식에 의한 심전신호 및 부가정보신호 무선전송)

  • 이훈규;박동철
    • Journal of Biomedical Engineering Research
    • /
    • v.21 no.4
    • /
    • pp.345-351
    • /
    • 2000
  • This study is to dvelop a radiotelemetry system to transmit and receive ECG (electrocardiograph) and event signals by using the frequency division multiplexing(FDM) technique. ECG signal sensed by the electrodes is amplified and added to the event signals acting in different frequency range for lead-off, nurse call and low level battery by using FDM. The sub-carrier oscillator using Colpitts circuits and main carrier frequency which is multiplied is frequency modulated by this superhetrodyne technique, and demodulated from the compose IF signal through the quadrature demodulator. A pulse counter demodulator and filtering circuits extract the original ECG and event signals.

  • PDF

Forward Link Performance of CDMA/FDM Systems with Truncated Adaptive Transmission (차단 적응 전송 기법을 쓴 부호분할 다중접속/주파수분할 방식의 내림 연결 성능)

  • Kim, Hong-Jik;Oh, Jong-Ho;Yoon, Seok-Ho;Lee, Ju-Mi;Song, Ick-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.7C
    • /
    • pp.666-674
    • /
    • 2005
  • A hybrid multicarrier CDMA/FDM system with a truncated adaptive transmission scheme is analyzed in forward link based on the feedback information from the mobile station. In the single cell environment, the prop(mea scheme outperforms the adaptive FH/DS system as well as the MC DS/CDMA system when orthogonal signature sequences are used. In the multiple cell environment also, the proposed scheme has better performance characteristics than the adaptive FH/DS system when orthogonal and random codes are used as spreading sequences.

Link-level Performance of SC-FDM using a Turbo Equalizer (터보 등화기를 적용한 SC-FDM의 링크-레벨 성능)

  • Lee, Joongho;Lim, Jaehong;Yoon, Seokhyun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.11
    • /
    • pp.26-32
    • /
    • 2014
  • Single-Carrier Frequency division multiplexing (SC-FDM) has been selected for the uplink transmission technique in 3GPP-LTE since it has an advantage of low peak-to-average power ratio (PAPR) in user's perspective. The receiver typically uses a frequency domain equalizer, which, however, suffers from noise boost and/or residual ISI especially when the channel has deep nulls. In this paper, we propose using turbo equalizer to mitigate such a problem. We provide link level performance comparison and an insight into how many iteration is needed for reasonable performance and complexity.

Layered Division Multiplexing (LDM) System for ATSC 3.0 (ATSC 3.0 을 위한 LDM 시스템)

  • Park, Sung Ik;Lee, Jae Young;Kwon, Sunhyoung;Kim, Heung Mook;Hur, Namho
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2015.07a
    • /
    • pp.306-307
    • /
    • 2015
  • 본 논문에서는 ATSC (Advanced Television Systems Committee) 3.0 시스템을 위한 LDM (Layered Division Multiplexing) 기술을 제안하고, 그 성능을 전산실험을 통해 분석한다. 제안된 LDM 시스템은 기존의 TDM (Time Division Multiplexing) / FDM (Frequency Division Multiplexing) 기술에 비해 약 3 에서 9 dB 의 성능 이득을 나타낸다.

  • PDF

Underwater acoustic communication system using diversity based on ray modeled underwater acoustic channel in Yellow Sea (다이버시티 기법을 이용한 서해에서의 음선 모델기반 수중음향통신 시스템)

  • Kang, Jiwoong;Kim, Hyeonsu;Ahn, Jongmin;Chung, Jaehak
    • The Journal of the Acoustical Society of Korea
    • /
    • v.35 no.1
    • /
    • pp.1-7
    • /
    • 2016
  • This paper proposes an adequate UWA (Underwater Acoustic) communication system of underwater communication network in the Yellow Sea. UWA channel is obtained from Bellhop ray tracing method with Yellow Sea environments. Based on this channel, communication parameters for CDMA (Code Division Multiple Access) and SC-FDM (Single Carrier-Frequency Division Multiplexing) using diversity techniques are calculated. In order to prove the proposed methods, BER (Bit Error Rate) and data rate are obtained using computer simulations and the adequate communication system for long rms delay spread and low Eb/No environments is proposed from the simulation.

Power Allocation and Capacity Analysis of OFDM-based Unlicensed User in TV White Space (TV 화이트 스페이스에서 OFDM 기반 비인가 사용자의 파워 할당 기법 및 용량 분석)

  • Lim, Sung-Mook;Hong, Dae-Sik
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.49 no.8
    • /
    • pp.70-76
    • /
    • 2012
  • In this paper, we propose a power allocation scheme of the unlicensed user based on orthogonal frequency division multiplexing (OFDM) in the TV white space (TVWS). Power constraints in TVWS should be satisfied in the time domain. However, because OFDM has high PAPR (peak-to-average power ratio), it is difficult to satisfy power constraints of TVWS in the time domain. Furthermore, the conventional power allocation schemes cannot be generally applied to unlicensed user in TVWS. Therefore, we propose a power allocation scheme to satisfy power constraints of TVWS by reducing PAPR in the time domain. In addition, we analyze the capacity of the unlicensed user based on OFDM in a closed form. Based on the capacity analysis, as the number of subcarriers decreases, the capacity can be enhanced. In simulation results, we show that the capacity of the unlicensed user increases, as the number of subcarriers decreases and the mean of the channel between the transmitter and the receiver of the unlicensed user increases.