• Title/Summary/Keyword: Frequency detector circuit

Search Result 123, Processing Time 0.024 seconds

Study for improvement of zero-cross detector of control element drive mechanism control system in PWR (경수로 제어봉구동장치제어계통의 영점위상탐지기 성능개선에 관한 연구)

  • 김병문;이병주;한상준
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.609-611
    • /
    • 1996
  • Zero-Cross Detector makes pilot signal to control the power to CEDM(Control Element Drive Mechanism). Existing Zero-Cross Detectors has had a problem which can cause unexpected reactor trip resulted from fluctuating frequency of input signal coming from M/G Set. The existing Zero-Cross Detector can't work properly when power frequency is varying because it was designed to work under stable M/G Set operation, and produces wrong pilot signal and output voltage. In this report the Zero-Cross Detector is improved to resolve voltage fluctuating problem by using new devices such as digital noise filtering circuit, variable cycle compensator and alarm circuit. And through the performance verification it shows that new circuit is better than old one. If suggested detector is applied to plant, it is possible to use it under House Load Operation because stable voltage can be generated by new Zero-Cross Detector.

  • PDF

Design and Implementation of L/Ku-band Broadband Power Detector using Schottky Diode (Schottky 다이오드를 이용한 Six-port용 L/Ku-band 광대역 Power detector 설계 제작)

  • Kim Young-Wan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.615-618
    • /
    • 2006
  • The broadband power detector for direct- onversion Six-port output circuit was designed and implementaed in this paper. The power detector should linearly operated to produce the linear amplitude and phase signal fer input RF signal in required broadband. So, the power detector should be designed under conditions of matching circuit with low VSWR. The designed power detectors, which were implemented in L-band with 50 ohm matching and Ku-band with matching circuit and isolator, respectively, were evaluated in the performances.

  • PDF

Low-noise fast-response readout circuit to improve coincidence time resolution

  • Jiwoong Jung;Yong Choi;Seunghun Back;Jin Ho Jung;Sangwon Lee;Yeonkyeong Kim
    • Nuclear Engineering and Technology
    • /
    • v.56 no.4
    • /
    • pp.1532-1537
    • /
    • 2024
  • Time-of-flight (TOF) PET detectors with fast-rise-time scintillators and fast-single photon time resolution silicon photomultiplier (SiPM) have been developed to improve the coincidence timing resolution (CTR) to sub-100 ps. The CTR can be further improved with an optimal bandwidth and minimized electronic noise in the readout circuit and this helps reduce the distortion of the fast signals generated from the TOF-PET detector. The purpose of this study was to develop an ultra-high frequency and fully-differential (UF-FD) readout circuit that minimizes distortion in the fast signals produced using TOF-PET detectors, and suppresses the impact of the electronic noise generated from the detector and front-end readout circuits. The proposed UF-FD readout circuit is composed of two differential amplifiers (time) and a current feedback operational amplifier (energy). The ultra-high frequency differential (7 GHz) amplifiers can reduce the common ground noise in the fully-differential mode and minimize the distortion in the fast signal. The CTR and energy resolution were measured to evaluate the performance of the UF-FD readout circuit. These results were compared with those obtained from a high-frequency and single ended readout circuit. The experiment results indicated that the UF-FD readout circuit proposed in this study could substantially improve the best achievable CTR of TOF-PET detectors.

A Peak Detector for Variable Frequency Three-Phase Sinusoidal Signals (가변주파수 3상 정현파 신호의 최대전압 검출기)

  • 김홍렬
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.2
    • /
    • pp.210-215
    • /
    • 1999
  • The proposed detector is consists of three-phase sinusoidal signal generator and peak detector. This peak detector can detect the peak voltage value at the state of variable frequency. In experi-ment three-phase sinusoidal signals are generated from D/A converter using IBM PC and deliv-ered to the peak detector. Each signals are squared by multiplier and summed up Peak value is the square root of summed value extracted by square root circuit.

  • PDF

A PFD (Phase Frequency Detector) with Shortened Reset time scheme (Reset time을 줄인 Phase Frequency Detector)

  • 윤상화;최영식;최혁환;권태하
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.10a
    • /
    • pp.385-388
    • /
    • 2003
  • In this paper, a D-Latch is replaced by a memory cell on the proposed PFD to improve response tine by reducing reset me. The PFD has been simulated using HSPICE with a Hynix 0.35um CMOS process to prove the performance improvement.

  • PDF

Giga-bps CMOS Clock and Data Recovery Circuit with a novel Adaptive Phase Detector (새로운 구조의 적응형 위상 검출기를 갖는 Gbps급 CMOS 클럭/데이타 복원 회로)

  • 이재욱;이천오;최우영
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.10C
    • /
    • pp.987-992
    • /
    • 2002
  • In this paper, a new clock and data recovery circuit is proposed for the application of data communication systems requiring ㎓-range clock signals. The circuit is suitable for recovering NRZ data which is widely used for high speed data transmission in ㎓ ranges. The high frequency jitter is one of major performance-limiting factors in PLL, particularly when NRZ data patterns are used. A novel phase detector is able to suppress this noise, and stable clock generation is achieved. Futhermore, the phase detector has an adaptive delay cell removing the dead zone problem and has the optimal characteristics for fast locking. The proposed circuit has a convenience structure that can be easily extended to multi-channels. The circuit is designed based on CMOS 0.25㎛ fabrication process and verified by measurement result.

A Clock and Data Recovery Circuit with Adaptive Loop Bandwidth Calibration and Idle Power Saved Frequency Acquisition

  • Lee, Won-Young;Jung, Chae Young;Cho, Ara
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.17 no.4
    • /
    • pp.568-576
    • /
    • 2017
  • This paper presents a clock and data recovery circuit with an adaptive loop bandwidth calibration scheme and the idle power saved frequency acquisition. The loop bandwidth calibration adaptively controls injection currents of the main loop with a trimmable bandgap reference circuit and trains the VCO to operate in the linear frequency control range. For stand-by power reduction of the phase detector, a clock gating circuit blocks 8-phase clock signals from the VCO and cuts off the current paths of current mode D-flip flops and latches during the frequency acquisition. 77.96% reduction has been accomplished in idle power consumption of the phase detector. In the jitter experiment, the proposed scheme reduces the jitter tolerance variation from 0.45-UI to 0.2-UI at 1-MHz as compared with the conventional circuit.

A Clock-Data Recovery using a 1/8-Rate Phase Detector (1/8-Rate Phase Detector를 이용한 클록-데이터 복원회로)

  • Bae, Chang-Hyun;Yoo, Changsik
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.1
    • /
    • pp.97-103
    • /
    • 2014
  • In this paper, a clock-data recovery using a 1/8-rate phase detector is proposed. The use of a conventional full or half-rate phase detector requires relatively higher frequency of a recovered clock, which is a burden on the design of a sampling circuit and a VCO. In this paper, a 1/8-rate phase detector is used to lower the frequency of the recovered clock and a linear equalizer is used as a input circuit of a phase detector to reduce the jitter of the recovered clock. A test chip fabricated in a 0.13-${\mu}m$ CMOS process is measured at 1.5-GHz for a 3-Gb/s PRBS input and 1.2-V power supply.

A Design Study of Phase Detectors for the 2.5 Gb/s Clock and Data Recovery Circuit (2-5 Gb/s 클럭-데이터 복원기를 위한 위상 비교기 설계 연구)

  • 이영미;우동식;유상대;김강욱
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2002.11a
    • /
    • pp.394-397
    • /
    • 2002
  • A design study of phase detectors for the 2.5 Gb/s CDR circuit using a standard 0.18-${\mu}{\textrm}{m}$ CMOS process has been performed. The targeted CDR is based on the phase-locked loop and thus it consists of a phase detector, a charge pump, a LPF, and a VCO. For high frequency operation of 2.5 Gb/s, phase detector and charge pump, which accurately compare phase errors to reduce clock jitter, are critical for designing a reliable CDR circuit. As a phase detector, the Hogge phase detector is selected but two transistors are added to improve the performance of the D-F/F. The charge pump was also designed to be placed indirectly input and output.

  • PDF

Design of a 6-bit 500MS/s CMOS A/D Converter with Comparator-based Input Voltage Range Detection Circuit

  • Dae, Si;Yoon, Kwang Sub
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.6
    • /
    • pp.706-711
    • /
    • 2014
  • A low power 6-bit flash ADC that uses an input voltage range detection algorithm is described. An input voltage level detector circuit has been designed to overcome the disadvantages of the flash ADC which consume most of the dynamic power dissipation due to comparators array. In this work, four digital input voltage range detectors are employed and each input voltage range detector generates the specific clock signal only if the input voltage falls between two adjacent reference voltages applied to the detector. The specific clock signal generated by the detector is applied to turn the corresponding latched comparators on and the rest of the comparators off. This ADC consumes 68.82 mW with a single power supply of 1.2V and achieves 4.3 effective number of bits for input frequency up to 1 MHz at 500 MS/s. Therefore it results in 4.6 pJ/step of Figure of Merit (FoM). The chip is fabricated in 0.13-um CMOS process.