• Title/Summary/Keyword: Frequency component

Search Result 1,821, Processing Time 0.027 seconds

Frequency Analysis and Reduction of Electronic Noise in ESS (ESS의 전자 잡음 주파수 분석 및 제거)

  • Ahn, Bong Man;Han, Byoung Sung;Han, Un Ki;Lee, Young Kwan;An, Hyun Jin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.6
    • /
    • pp.568-575
    • /
    • 2022
  • This paper is a study on frequency analysis and electronic noise reduction of energy storage system (ESS). We acquired 4 necessary data for about 2 minutes and 4 seconds using a sampling frequency of 10,000 Hz in ESS. Fast Fourier transform (FFT) was used for electronic noise analysis from the acquired data. As a result, it was confirmed that DC component, fundamental wave, second and higher harmonic component exist. For the attenuation of harmonics, low-pass filter (LPF) was applied. We confirmed that an attenuation of approximately 59.3% appears from the second harmonic. The presence of many harmonic components in the data of the ESS was expected to occur due to the insufficiency of optimization among the modules inside the ESS. Therefore, we propose that a national certification system for ESS should be introduced to settle down the issue properly.

Frequency-stabilized Femtosecond Mode-locked Laser for Optical Frequency Metrology

  • Yoon, Tai-Hyun;Kim, Eok-Bong;Park, Seong-Tae
    • Journal of the Optical Society of Korea
    • /
    • v.7 no.3
    • /
    • pp.131-134
    • /
    • 2003
  • We demonstrated an optical frequency synthesizer based on a femtosecond (fs) mode-locked Ti:sapphire (Ti:s) laser by simultaneously stabilizing the carrier-offset frequency, $f_{ceo}$, and repetition rate, $f_{ rep}$, referenced to the Cs atomic frequency standard. By using two wide-band digital phase-detectors we realized a phase-coherent link between $f_{rep} and f_{ceo} with the relation f_{ceo} = f_{AOM} 5/6f_{rep} ≡ 0, where f_{AOM} = 5/6f_{rep}$ is the phase-locked driving frequency of an acousto-optic modulator (AOM) in a self-referencing interferometer and $f_{rep}$ = 100 MHz. As a result, we could stabilize all components of the fs laser comb at once with an equal frequency separation $f_{rep}$ = 100 MHz with $f_{ceo}$ = 0. In our optical frequency synthesizer, the frequency of the nth component ($f_{n}$) is given exactly by the simple relation $f_n = nf_{rep}$, enabling us to use the fs laser comb as a frequency ruler in the optical frequency metrology.

The Study of Fast Frequency Measurement Technique for Protection Relay (계전기를 위한 고속의 주교수 계측 알고리즘)

  • Kim, Beung-Jin;Lee, Chang-Ho;Park, Jong-Chan
    • Proceedings of the KIEE Conference
    • /
    • 2005.07a
    • /
    • pp.211-213
    • /
    • 2005
  • In this paper, the frequency compensator for digital protective relay is introduced. Due to sudden appearance of generation-load or fault in power system, the frequency can deviate from its nominal value. The Orthogonal filter adopted to digital protective relay is exposed to the problem. Therefore, the frequency variation makes a difficult to protective function and power measurement in digital protective relay. The essential property of the proposed algorithm presented is its outstanding immunity to both signal orthogonal component magnitudes and DFT filter gain variations which ensures below 0.05Hz accuracy of estimation. Additionally, the proposed method has excellent characteristics with low signal sampling rate. Based on the frequency estimation, author design under frequency protection relay for generator and verifies its performance with several experimental tests.

  • PDF

Super-High-Speed Lightwave Demodulation using the Nonlinearities of an Avalanche Photodiode

  • Park, Young-Kyu
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.2C no.5
    • /
    • pp.273-278
    • /
    • 2002
  • Even though the modulating signal frequency of the light is too high to detect directly, the signal can be extracted by frequency conversion at the same time as the detection by means of the non-linearity of the APD. An analysis is presented for super-high-speed optical demodulation by an APD with electronic mixing. A normalized gain is defined to evaluate the performance of the frequency conversion demodulation. The nonlinear effect of the internal capacitance was included in the small signal circuit analysis. We showed theoretically and experimentally that the normalized gain is dependent on the down converted difference frequency component. In the experiment, the down converted different frequency outputs became larger than the directly detected original signal for the applied local signal of 20㏈m.

Decomposition of Speech Signal into AM-FM Components Using Varialle Bandwidth Filter (가변 대역폭 필터를 이용한 음성신호의 AM-FM 성분 분리에 관한 연구)

  • Song, Min;Lee, He-Young
    • Speech Sciences
    • /
    • v.8 no.4
    • /
    • pp.45-58
    • /
    • 2001
  • Modulated components of a speech signal are frequently used for speech coding, speech recognition, and speech synthesis. Time-frequency representation (TFR) reveals some information about instantaneous frequency, instantaneous bandwidth and boundary of each component of the considering speech signal. In many cases, the extraction of AM-FM components corresponding to instantaneous frequencies is difficult since the Fourier spectra of the components with time-varying instantaneous frequency are overlapped each other in Fourier frequency domain. In this paper, an efficient method decomposing speech signal into AM-FM components is proposed. A variable bandwidth filter is developed for the decomposition of speech signals with time-varying instantaneous frequencies. The variable bandwidth filter can extract AM-FM components of a speech signal whose TFRs are not overlapped in timefrequency domain. Also, amplitude and instantaneous frequency of the decomposed components are estimated by using Hilbert transform.

  • PDF

Analysis of Characteristic Frequency along Fault Distance on a Transmission Line (송전 선로의 사고 거리에 따른 특성 주파수 해석)

  • 남순열;홍정기;강상희;박종근
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.53 no.8
    • /
    • pp.432-437
    • /
    • 2004
  • Since the characteristic frequency is decreased in proportion to the fault distance, the characteristic frequency component may be insufficiently eliminated by a low-pass filter on a long transmission line. In order to set a standard for the cut-off frequency of the low-pass filter, this paper proposes a method for obtaining the characteristic frequencies due to line faults. The application results of the proposed method are presented for line to ground (LG) faults and line to line (LL) faults on a 345 kV 200 km overhead transmission line. The EMTP is used to generate fault signals under different fault locations and fault inception angles. By comparison between the characteristic frequencies obtained from the proposed method and the EMTP simulation, it is shown that the proposed method accurately obtains the characteristic frequency.

Ground Impedance and Frequency Response Characteristics of Large-scale Ground Rods (대형 봉상 접지전극의 접지임피던스와 주파수 응답특성)

  • Lee, Bok-Hee;Eom, Ju-Hong;Kim, Tai-Doo;Chung, Dong-Chul;Kil, Hyeong-Joon
    • Proceedings of the KIEE Conference
    • /
    • 2003.07c
    • /
    • pp.1791-1793
    • /
    • 2003
  • In order to analyze the dynamic characteristics of ground impedance in large grounding system for lightning and surge protections, a novel method for measuring the ground impedance as a function of frequency was proposed. The experiments were carried out in the grounding system composed of ground rods and mesh grids. The test current was injected by the variable frequency inverter whose frequency is linearly controlled in the range of $5{\sim}500$kHz. The ground impedance and frequency response of the grounding system were mainly caused by the inductive current flowing through grounding conductors over the frequency of 2002. In the combined grounding system of rods and mesh grids, inductive component of ground impedance was significantly decreased. It was fumed out that the grounding system is effective for the surge protection.

  • PDF

Peak-to-Average Power Ratio of Orthogonal Frequency Division Multiplexing with ICI Self-Cancellation (채널간간섭 자기소거법이 적용된 직교 주파수분할다중화의 첨두전력 대 평균전력비)

  • Kang Seog Gen
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.1
    • /
    • pp.1-8
    • /
    • 2005
  • In this paper, peak-to-average power ratio (PAPR) of orthogonal frequency division multiplexing (OFDM) with respect to the subchannel coding schemes for interchannel interference (ICI) self-cancellation is analyzed. It is shown theoretically and experimentally that a shaping component is generated in the transmitted sequence in the conventional correlative coding where a pair of antipodal signals is assigned in adjacent subchannels. Due to the shaping component, the signal powers in the mid and edges of a symbol are scaled by different weighting coefficients, resulting in increased PAPR. To overcome this problem a simple adjacent subchannel coding scheme is presented in this paper. In the new scheme, the shaping component caused by partial repetition of signals is eliminated by assigning a pair of signals in which phase difference varies signal-to-signal. As results, the new scheme has 2-3 dB smaller PAPR than the conventional ICI self-cancellation OFDM while maintaining much higher carrier-to-interference ratio than a normal OFDM system.

Principal component analysis based frequency-time feature extraction for seismic wave classification (지진파 분류를 위한 주성분 기반 주파수-시간 특징 추출)

  • Min, Jeongki;Kim, Gwantea;Ku, Bonhwa;Lee, Jimin;Ahn, Jaekwang;Ko, Hanseok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.6
    • /
    • pp.687-696
    • /
    • 2019
  • Conventional feature of seismic classification focuses on strong seismic classification, while it is not suitable for classifying micro-seismic waves. We propose a feature extraction method based on histogram and Principal Component Analysis (PCA) in frequency-time space suitable for classifying seismic waves including strong, micro, and artificial seismic waves, as well as noise classification. The proposed method essentially employs histogram and PCA based features by concatenating the frequency and time information for binary classification which consist strong-micro-artificial/noise and micro/noise and micro/artificial seismic waves. Based on the recent earthquake data from 2017 to 2018, effectiveness of the proposed feature extraction method is demonstrated by comparing it with existing methods.

An Efficient Resource Allocation Scheme For An Integrated Satellite/Terrestrial Networks (위성/지상 겸용 망 내 간섭을 고려한 최적 자원 할당 방식)

  • Park, Unhee;Kim, Hee Wook;Oh, Dae-Sub;Jang, Dae-Ik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.2
    • /
    • pp.298-306
    • /
    • 2015
  • In this paper, we propose an efficient resource allocation scheme for the integrated satellite/terrestrial networks. The proposed scheme is a frequency sharing technique to mitigate the inter-component interferences which can be generated between a satellite beam and terrestrial cells that are operated in the same frequency. The proposed dynamic resource allocation scheme can mitigate the total inter-component interference by optimizing the total transmission power and it can expect a result of which can lead to an increase in capacity. In such a system, the interference situation can be affected by the distributed traffic demands or up/down link communications environments. In this point of view, we evaluate the performance of the total consumed power, the amount of inter-component interference with respect to different traffic distributions and interference environments between the satellite beam and terrestrial systems.