• 제목/요약/키워드: Frequency compensation

검색결과 862건 처리시간 0.033초

효율적 버퍼 주파수 보상을 통한 LDO 선형 레귤레이터 (LDO Linear Regulator Using Efficient Buffer Frequency Compensation)

  • 최정수;장기창;최중호
    • 대한전자공학회논문지SD
    • /
    • 제48권11호
    • /
    • pp.34-40
    • /
    • 2011
  • 본 논문은 낮은 출력 저항을 버퍼를 사용하여 주파수 보상을 수행한 LDO 선형 레귤레이터에 관한 것이다. 주파수 보상을 위해 제안하는 버퍼는 두 개의 shunt 피드백 루프를 사용하여 출력 저항을 최소화함으로써 이를 통해 LDO 선형 레귤레이터 전체의 부하 및 입력 전압에 따른 레귤레이션 성능을 개선할 수 있고 저전압에서도 낮은 출력 저항을 유지함으로 휴대기기 응용에 있어서도 적합하다. 또한 외부 디지털 제어를 통한 LDO 선형 레귤레이터의 출력 전압을 가변함으로써 외부 MCU와의 인터페이스를 개선하기 위한 기준 전압 제어 기법을 나타내었다. 구현된 LDO 선형 레귤레이터는 2.5V~4.5V의 입력 전압에 대하여 동작하며 최대 300mA의 부하 전류를 0.6~3.3V의 출력 전압에 대하여 제공할 수 있다.

시간-주파수 영역 해석법을 이용한 레이더 영상 품질 개선에 대한 연구 (Improvement of Radar Images Using Time-Frequency Transform)

  • 정상원;김경태
    • 한국전자파학회논문지
    • /
    • 제21권1호
    • /
    • pp.14-19
    • /
    • 2010
  • 본 논문에서는 흐려진 ISAR(Inverse Synthetic Aperture Radar) 영상의 회전 오차를 보상하기 위해 시간-주파수 영역 해석법을 이용한 회전 이동 보상(rotational motion compensation) 알고리즘을 제시한다. 실제의 비행 환경에서는 표적의 회전이나 가속 등의 움직임으로 인하여 도플러 주파수 천이가 시간에 따라 변하게 되고, 이에 따라 회전 오차(motion error)가 발생한다. 본 알고리즘으로 도플러 주파수 영역 방향으로 흐려진 ISAR 영상을 개선한다. 시뮬레이션 결과, 기동하는 표적에 회전 오차가 있을 경우에 시간-주파수 영역 해석법은 흐려진 레이더 영상의 품질을 개선하는데 효율적임을 알 수 있다.

Roles of Nitric Oxide in Vestibular Compensation

  • Jeong, Han-Seong;Jun, Jae-Yeoul;Park, Jong-Seong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제7권2호
    • /
    • pp.73-77
    • /
    • 2003
  • The effects of nitric oxide on the vestibular function recovery following unilateral labyrinthectomy (UL) were studied. Sprague-Dawley male rats, treated with nitric oxide liberating agent sodium nitroprusside (SNP) and NOS inhibitor $N^G$-nitro-L-arginine methyl ester (L-NAME), were subjected to destruction of the unilateral vestibular apparatus, and then spontaneous nystagmus was observed in the rat. To explore the effects of nitric oxide on the neuronal excitability, whole cell patch clamp technique was applied on isolated medial vestibular nuclear neurons. The frequency of spontaneous nystagmus in SNP treated rats was lesser than that of spontaneous nystagmus in control animals. In contrast, pre-UL treatment with L-NAME resulted in a significant increase in spontaneous nystagmus frequency. In addition, SNP increased the frequency of spontaneous action potential in isolated medial vestibular nuclear neurons. Potassium currents of the vestibular nuclear neurons were inhibited by SNP. After blockade of calcium dependent potassium currents by high EGTA (11 mM) in a pipette solution, SNP did not inhibit outward potassium currents. 1H-[1,2,4] oxadiazolo [4,3-a] quinozalin-1-one (ODQ), a specific inhibitor of soluble guanylyl cyclase, inhibited the effects of SNP on the spontaneous firing and the potassium current. These results suggest that nitric oxide after unilateral labyrinthectomy would help to facilitate vestibular compensation by inhibiting calcium-dependent potassium currents through increasing intracellular cGMP, and consequently would increase excitability in ipsilateral vestibular nuclear neurons.

주파수 선택적 Rayleigh 페이딩 채널에서 고차 PS QAM 채널 보상에 대한 연구 (A Research on Multiple PS QAM for Channel Compensation in Frequency-Selective Rayleigh Fading Channels)

  • 김정수
    • 한국컴퓨터정보학회논문지
    • /
    • 제18권7호
    • /
    • pp.79-84
    • /
    • 2013
  • 본 논문에서는 파일럿 심벌을 이용하여 플랫 페이딩 채널에서 페이딩 정보를 예측하여 보상하는 방식인 PSAM(Pilot Symbol Assisted Modulation) 방식에 대해 주파수 선택적 Rayleigh 페이딩 채널에서 지연파의 영향을 받는 경우 발생하는 문제점 등을 분석하고 이를 개선하기 위하여 고차 PS(Pilot Symbol) QAM 채널보상 방식을 제안한다. 기존의 PSAM 방식은 지연파의 지연강도가 조금만 영향을 미치더라도 SNR(Signal-to-Noise Ratio)에 상관없이 심각한 성능저하를 보이지만 제안된 방식은 지연파의 지연강도에 영향을 받지만 안정적인 성능개선을 보인다.

Parallel Control of Shunt Active Power Filters in Capacity Proportion Frequency Allocation Mode

  • Zhang, Shuquan;Dai, Ke;Xie, Bin;Kang, Yong
    • Journal of Power Electronics
    • /
    • 제10권4호
    • /
    • pp.419-427
    • /
    • 2010
  • A parallel control strategy in capacity proportion frequency allocation mode for shunt active power filters (APFs) is proposed to overcome some of the difficulties in high power applications. To improve the compensation accuracy and overall system stability, an improved selective harmonic current control based on multiple synchronous rotating reference coordinates is presented in a single APF unit, which approximately implements zero steady-state error compensation. The combined decoupling strategy is proposed and theoretically analyzed to simplify selective harmonic current control. Improved selective harmonic current control forms the basis for multi-APF parallel operation. Therefore, a parallel control strategy is proposed to realize a proper optimization so that the APFs with a larger capacity compensate more harmonic current and the ones with a smaller capacity compensate less harmonic current, which is very practical for accurate harmonic current compensation and stable grid operation in high power applications. This is verified by experimental results. The total harmonic distortion (THD) is reduced from 29% to 2.7% for a typical uncontrolled rectifier load with a resistor and an inductor in a laboratory platform.

Modular Scalable Inverter System에서 캐리어 비동기시 고주파 전압 보상을 이용한 순환전류 저감 기법 (Circulating Current Reduction Method Using High Frequency Voltage Compensation in Asynchronous Carriers for Modular Scalable Inverter System)

  • 최승연;강신원;임준혁;김래영
    • 전력전자학회논문지
    • /
    • 제24권2호
    • /
    • pp.71-77
    • /
    • 2019
  • This study proposes a circulating current reduction method that uses high-frequency voltage compensation when carrier phase difference occurs between two inverters in MSIS. In MSIS, inverters are configured in parallel to increase power capacity and to increase efficiency by using inverters only as needed. However, in the parallel inverter structure, circulating current is inevitably generated. Circulating current increases the stress on the switch, adversely affects the current control performance, and renders load sharing difficult. The proposed method compensates for the output voltage reference of the slave module by using the high-frequency voltage so that the switching pattern of each module is matched even in asynchronous carriers. The validity of the proposed method is verified by simulations and experiments with 600 W IPMSM.

넓은 입출력 전압을 위한 LLC 공진형 컨버터의 풀 브리지-하프 브리지 모드 변환 기법 연구 (A Study on Full Bridge and Half Bridge Mode Transition Method of LLC Resonant Converter for Wide Input and Output Voltage Condition)

  • 최민영;백승우;김학원;조관열;강정원
    • 전력전자학회논문지
    • /
    • 제27권4호
    • /
    • pp.356-366
    • /
    • 2022
  • This paper presents a mode transition method that applies frequency compensation technique of an LLC resonant converter for stable mode transition. LLC resonant converters used in various applications require high efficiency and high power density. However, because of circuit property, a wider voltage gain range equates to a greater circuit loss, so maintaining high efficiency at all voltage gain ranges is difficult. In this case, full bridge-half bridge mode transition method can be used, which maintains high efficiency even in a wide voltage gain range. However, this method causes damage to the circuit through overcurrent by the mode transition. This study analyzes the cause of the problem and proposes a mode transition method that applies frequency compensation technique to solve the problem. The proposed method verifies the stable transition through simulation analysis and experimental results.

Wind Energy Interface to Grid with Load Compensation by Diode Clamped Multilevel Inverters

  • Samuel, Paulson;Naik, M. Kishore;Gupta, Rajesh;Chandra, Dinesh
    • Journal of Power Electronics
    • /
    • 제14권2호
    • /
    • pp.271-281
    • /
    • 2014
  • Fluctuating wind conditions necessitate the use of a variable speed wind turbine (VSWT) with a AC/DC/AC converter scheme in order to harvest the maximum power from the wind and to decouple the synchronous generator voltage and frequency from the grid voltage and frequency. In this paper, a combination of a three phase diode bridge rectifier (DBR) and a modified topology of the diode clamped multilevel inverter (DCMLI) has been considered as an AC/DC/AC converter. A control strategy has been proposed for the DCMLI to achieve the objective of grid interface of a wind power system together with local load compensation. A novel fixed frequency current control method is proposed for the DCMLI based on the level shifted multi carrier PWM for achieving the required control objectives with equal and uniform switching frequency operation for better control and thermal management with the modified DCMLI. The condition of the controller gain is derived to ensure the operation of the DCMLI at the fixed frequency of the carrier. The converter current injected into the distribution grid is controlled in accordance with the wind power availability. In addition, load compensation is performed as an added facility in order to free the source currents being fed from the grid of harmonic distortion, unbalance and a low power factor even though the load may be unbalanced, non-linear and of a poor power factor. The results are validated using PSCAD/EMTDC simulation studies.

Iterative Detection and ICI Cancellation for MISO-mode DVB-T2 System with Dual Carrier Frequency Offsets

  • Jeon, Eun-Sung;Seo, Jeong-Wook;Yang, Jang-Hoon;Paik, Jong-Ho;Kim, Dong-Ku
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제6권2호
    • /
    • pp.702-721
    • /
    • 2012
  • In the DVB-T2 system with a multiple-input single-output (MISO) transmission mode, Alamouti coded orthogonal frequency division multiplexing (OFDM) signals are transmitted simultaneously from two spatially separated transmitters in a single frequency network (SFN). In such systems, each transmit-receive link may have a distinct carrier frequency offset (CFO) due to the Doppler shift and/or frequency mismatch between the local oscillators. Thus, the received signal experiences dual CFOs. This not only causes dual phase errors in desired data but also introduces inter-carrier interference (ICI), which cannot be removed completely by simply performing a CFO compensation. To overcome this problem, this paper proposes an iterative detection with dual phase errors compensation technique. In addition, we propose a successive-iterative ICI cancellation technique. This technique successively eliminates ICI in the initial iteration by exploiting pre-detected data pairs. Then, in subsequent iterations, it performs a fine interference cancellation using a priori information, iteratively fed back from the channel decoder. In contrast to previous works, the proposed techniques do not require estimates of dual CFOs. Their performances are evaluated via a full DVB-T2 simulator. Simulation results show that the DVB-T2 receiver equipped with the proposed dual phase errors compensation and the successive-iterative ICI cancellation techniques achieves almost the same performance as ideal dual CFOs-free systems, even for large dual CFOs.

Low Frequency Current Ripple Mitigation of Two Stage Three-Phase PEMFC Generation Systems

  • Deng, Huiwen;Li, Qi;Liu, Zhixiang;Li, Lun;Chen, Weirong
    • Journal of Power Electronics
    • /
    • 제16권6호
    • /
    • pp.2243-2257
    • /
    • 2016
  • This paper presents a two stage three-phase proton exchange membrane fuel cell (PEMFC) generation system. When the system is connected to a three-phase load, it is very sensitive to the characteristics and type of the load. Especially unbalanced three-phase loads, which result in a pulsating power that is twice the output frequency at the inverter output, and cause the dc-link to generate low frequency ripples. This penetrates to the fuel cell side through the front-end dc-dc converter, which makes the fuel cell work in an unsafe condition and degrades its lifespan. In this paper, the generation and propagation mechanism of low frequency ripple is analyzed and its impact on fuel cells is presented based on the PEMFC output characteristics model. Then a novel method to evaluate low frequency current ripple control capability is investigated. Moreover, a control scheme with bandpass filter inserted into the current feed-forward path, and ripple duty ratio compensation based on current mode control with notch filter is also proposed to achieve low frequency ripple suppression and dynamic characteristics improvement during load transients. Finally, different control methods are verified and compared by simulation and experimental results.