• Title/Summary/Keyword: Frequency Tuning Range

Search Result 227, Processing Time 0.023 seconds

A Study on the Lightwave off-set Locking using Frequency Difference Detector (주파수 차이 검출기를 이용한 광파의 off-set 주파수 로킹 연구)

  • 유강희
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.2
    • /
    • pp.484-493
    • /
    • 2004
  • A new lightwave locking technique which can be used in tuning the wavelength of a local laser diode to the reference wavelength is presented in this paper. The optical frequency from the reference laser source and the optical frequency from the local slave VCO laser are heterodyned on a optical receiver, resulting in the 1.5GHz RF signal corresponding to the difference frequency between two input optical signals. The difference frequency is locked to the reference 1.5GHz oscillator source in off-set frequency locking loop. Using the commercialized microwave components, frequency difference detector can be easily established to lock the lightwave. The optical frequency of 1.55um laser diode which keeps the frequency off-set of 1.5GHz is locked to the input reference optical signal with the locking range of 320MHz.

New Active Muffler System Utilizing Destructive Interference by Difference of Transmission Paths (전달경로의 차이를 이용한 새로운 차량용 능동 머플러의 개발)

  • Hwang, Yo-Ha;Lee, Jong-Min;Kim, Seung-Jong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.5
    • /
    • pp.374-379
    • /
    • 2002
  • A new active muffler system has been developed and its superior performance on both noise reduction and engine torque increase is demonstrated with experiment. Main characteristic of the proposed muffler system is the use of destructive interference by transmission path difference of divided exhaust pipes to reduce major exhaust noise components thereby overcoming problems of other active exhaust noise control methods. The exhaust pipe is divided into two sections and joined again downstream. One divided pipe has a sliding mechanism to vary its length, which is controlled to make half wavelength transmission path difference for the major engine rpm frequency. In this system one divided pipe is used to control major rpm frequency and its Harmonics and another pipe is used to control noise component double the frequency of rpm. An after-market tuning muffler, which has very simple internal structure and minimal back pressure, is also installed to remove remaining wideband noise. To make the system to be small enough to be practical, conventional muffler is also installed and used in low rpm range and active muffler is only employed in high rpm range. Noise reduction of the proposed system is comparable to conventional passive muffler. The engine dynamo test has proved the proposed system can recover almost all the torque lost by conventional muffler.

The injection-locking coupled oscillators for the active integrated phased array antenna (능동 위상배열 안테나를 위한 Injection-locking coupled oscillators)

  • 김교헌;이두한;류연국;이승무;오일덕;홍의석
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.9
    • /
    • pp.2362-2372
    • /
    • 1996
  • This paper deals with the design and development of an Injection-Locking Coupled Oscillators(ILCO), which functions like phase-shifter in the Active Intergrated Phased Array Antenna(AIPAA). This linear array 2-element ILCO consists of two Injection Locking Hair-pin Resonator Oscillators(ILHRO) and an unilateral amplifier. The first and second elements of the ILCO have same frequency tuning range but locking bandwidths of 11.5MHz and 14MHz respectively. A phase shift of .DELTA..PHI.=158.4.deg.(-78.0.deg. to 80.4.deg.) could be obtained inthe second element of ILCO when the first elementof the ILCO was in the reference locking mode(.DELTA..PHI.=0.deg.). When the ILCO is applied to the AIPAA, the predicted beam scanning angle value will be 38.4.deg.. Each ILCO gives good frequency stability and lower AM, FM, and PM noise charactheristics in the mutual coupling lockingmode. The ILCO can not only play a part as the phase shifter for the AIPAA but it can also be usedas the power combining device in the mm-wave frequency range and as a part of a T/R MMIC module.

  • PDF

Design of Temperature Compensation Circuit to Compensate Temperature Characteristics of VCO (VCO의 온도 특성 보상을 위한 온도 보상 회로의 설계)

  • Kim, Byung-Chul;Huang, Gui-Hua;Cho, Kyung-Rae;Lee, Jae-Buom
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.3
    • /
    • pp.223-228
    • /
    • 2010
  • In this paper, temperature compensation circuit for the X-band voltage controlled oscillator(VCO) is presented by using the temperature sensor with the OP-AMP circuit. The frequency drifting by the temperature could be compensated by applying the tuning voltage which include the linearly changing output voltage of the temperature sensor. As a result, the frequency variation is reduced to 6.6~4.4 MHzfrom the 71~73 MHz variation with the compensation circuit over -30~+$60^{\circ}C$ range, when VCO is operated in the frequency range of 9.95~10.05 GHz.

Approach for Microwave Frequency Measurement Based on a Single Photonic Chip Combined with a Phase Modulator and Microring Resonator

  • Zhang, Jiahong;Zhu, Chuyi;Yang, Xiumei;Li, Yingna;Zhao, Zhengang;Li, Chuan
    • Current Optics and Photonics
    • /
    • v.2 no.6
    • /
    • pp.576-581
    • /
    • 2018
  • A new approach for identification of a microwave frequency using an integrated optical waveguide chip, combined with a phase modulator (PM) and two microring resonators (MRRs), is proposed, theoretically deduced, and verified. By wavelength tuning to set the PM under the condition of a double side band (DSB), the measurement range can be started from the dc component, and the measurement range and response slope can be adjusted by designing the radius and transmission coefficient of the MRR. Simulations reveal that the amplitude comparison function (ACF) has a monotonic relationship from dc to 32.5 GHz, with a response slope of 5.15 dB under conditions of DSB modulation, when the radius values, transmission coefficients, and the loss factors are designed respectively as $R_1=400{\mu}m$, $R_2=600{\mu}m$, $t_1=t_2=0.63$, and ${\gamma}_1={\gamma}_2=0.66$. Theoretical calculations and simulation results both indicate that this new approach has the potential to be used for measuring microwave frequencies, with the advantages of compact structure and superior reconfigurability.

A Design of Voltage Controlled Oscillator and High Speed 1/4 Frequency Divider using 65nm CMOS Process (65nm CMOS 공정을 이용한 전압제어발진기와 고속 4분주기의 설계)

  • Lee, Jongsuk;Moon, Yong
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.11
    • /
    • pp.107-113
    • /
    • 2014
  • A VCO (Voltage Controlled Oscillator) and a divide-by-4 high speed frequency divider are implemented using 65nm CMOS technology for 60GHz wireless communication system. The mm-wave VCO was designed by NMOS cross-coupled LC type using current source. The architecture of the divide-by-4 high speed frequency divider is differential ILFD (Injection Locking Frequency Divider) with varactor to control frequency range. The frequency divider also uses current sources to get good phase noise characteristics. The measured results show that the VCO has 64.36~67.68GHz tuning range and the frequency divider divides the VCO output by 4 exactly. The high output power of 5.47~5.97dBm from the frequency divider is measured. The phase noise of the VCO including the frequency divider are -77.17dBc/Hz at 1MHz and -110.83dBc/Hz at 10MHz offset frequency. The power consumption including VCO is 38.4mW with 1.2V supply voltage.

A Low-Power Design of Delta-Sigma Based Digital Frequency Synthesizer for Bio Sensor Networks (의료용 센서 네트워크를 위한 저전력 델타 시그마 디지털 주파수 합성기 설계)

  • Bae, Jung-Nam;Kim, Jin-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.5
    • /
    • pp.193-197
    • /
    • 2017
  • In this paper, we present a low-power delta-sigma based digital frequency synthesizer with high frequency resolution for bio sensor networks. Biomedical radio-frequency (RF) transceivers require miniaturized forms with a long battery life and low power consumption. For the technology scaling, digital circuits have become preferable compared to analog circuits because of the aggressive cost, size, flexibility, and repeatability. Therefore, the digital circuits based on standard-cell library are used to reduce a power consumption. Additionally, a delta-sigma is used for making fractional frequency tuning range. From the simulation, we confirmed that proposed scheme has good performance in accordance with power and frequency resolution.

Dual-Band VCO using Composite Right/Left-Handed Transmission Line and Tunable Negative Resistanc based on Pin Diode (Composite Right/Left-Handed 전송 선로와 Pin Diode를 이용한 조절 가능한 부성 저항을 이용한 이중 대역 전압 제어 발진기)

  • Choi, Jae-Won;Seo, Chul-Hun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.12
    • /
    • pp.16-21
    • /
    • 2007
  • In this paper, the dual-band voltage-controled oscillator (VCO) using the composite right/left-handed (CRLH) transmission line (TL) and the tunable negative resistance based on the fin diode is presented. It is demonstrated that the CRLH TL can lead to metamaterial transmission line with the dual-band tuning capability. The dual-band operation of the CRLH TL is achieved by the frequency offset and the phase slope of the CRLH TL, and the frequency ratio of the two operating frequencies can be a non-integer. Each frequency band of VCO has to operate independently, so we have used the tunable negative resistance based on the pin diode. When the forward bias has been into the pin diode, the phase noise of VCO is $-108.34\sim-106.67$ dBc/Hz @ 100 kHz in the tuning range, $2.423\sim2.597$ GHz, whereas when the reverse bias has been fed into the pin diode, that of VCO is $-114.16\sim-113.33$ dBc/Hz @ 100 kHz in the tuning range, $5.137\sim5.354$ GHz.

Design of Frequency Synthesizer using Novel Architecture Programmable frequency Divider (새로운 구조의 프로그램어블 주파수 분주기를 사용한 주파수 합성기 설계)

  • 김태엽;박수양;손상희
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.6C
    • /
    • pp.619-624
    • /
    • 2002
  • In this paper, a novel architecture of programmable divider with fifty percent duty cycle output and programmable dividing number has been proposed. Through HSPICE simulation, a 900MHz frequency synthesizer with proposed (sequency divider has designed in a standard 0.25㎛ CMOS technology To verify the operation of proposed frequency divider, a chip had been fabricated using 0.65㎛ 2-poly, 3-metal standard CMOS processing and experimental result shows that the proposed frequency divider works well. The designed voltage controlled oscillator(VCO) has a center frequency of 900MHz a tuning range of $\pm$10%, and a gain of 154HHz/V. The simulated frequency synthesizer performance has a settling time of 1.5$\mu$s, a frequency range from 820MHz to IGHz and power consumption of 70mW at 2.5V power supply voltage.

Design of Frequency Synthesizer using Novel Architecture Programmable Frequency Divider (새로운 구조의 프로그램어블 주파수 분주기를 사용한 주파수 합성기 설계)

  • 김태엽;박수양;손상희
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.5C
    • /
    • pp.500-505
    • /
    • 2002
  • In this paper, a novel architecture of programmable divider with fifty percent duty cycle output and programmable dividing number has been proposed. Through HSPICE simulation, a 900MHz frequency synthesizer with proposed frequency divider has designed in a standard 0.25$\mu\textrm{m}$ CMOS technology. To verify the operation of proposed frequency divider, a chip had been fabricated using 0.65$\mu\textrm{m}$ 2-poly, 3-metal standard CMOS processing and experimental result shows that the proposed frequency divider works well. The designed voltage controlled oscillator(VCO) has a center frequency of 900MHz, a tuning range of ${\pm}$10%, and a gain of 154MHz/V. The simulated frequency synthesizer performance has a settling time of 1.5${\mu}\textrm{s}$, a frequency range from 820MHz to 1GHz and power consumption of 70mW at 2.5V power supply voltage.