• Title/Summary/Keyword: Frequency Shift Key

Search Result 35, Processing Time 0.033 seconds

Cascaded Multi-Level Inverter Based IPT Systems for High Power Applications

  • Li, Yong;Mai, Ruikun;Yang, Mingkai;He, Zhengyou
    • Journal of Power Electronics
    • /
    • v.15 no.6
    • /
    • pp.1508-1516
    • /
    • 2015
  • A single phase H-bridge inverter is employed in conventional Inductive Power Transfer (IPT) systems as the primary side power supply. These systems may not be suitable for some high power applications, due to the constraints of the power electronic devices and the cost. A high-frequency cascaded multi-level inverter employed in IPT systems, which is suitable for high power applications, is presented in this paper. The Phase Shift Pulse Width Modulation (PS-PWM) method is proposed to realize power regulation and selective harmonic elimination. Explicit solutions against phase shift angle and pulse width are given according to the constraints of the selective harmonic elimination equation and the required voltage to avoid solving non-linear transcendental equations. The validity of the proposed control approach is verified by the experimental results obtained with a 2kW prototype system. This approach is expected to be useful for high power IPT applications, and the output power of each H-bridge unit is identical by the proposed approach.

Eye Pattern Characteristic Based Active Stabilization Method for Direct Delection Receiver in Differential Phase Shift Key System (차동 위상 변조 전송 시스템에서 수신 신호 눈열림 특성을 이용한 직접 검출 수신단 최적화 및 안정화 제어 연구)

  • Jang, Youn-Seon;Park, Heuk;Kim, Kwang-Joon
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.4
    • /
    • pp.313-318
    • /
    • 2005
  • We propose an active stabilization method for the receiver of NRZ-DPSK transmission. The 1-bit delayed Mach-Zehlder interferometer is thermally controlled to maintain the largest DC component power ratio between the constructive and destructive output ports, for the optimum transmission condition. This method is very cost effective since no additional components are required. Experimental results show that the proposed scheme guarantees error free performance even when there was ~ 1 GHz optical carrier frequency fluctuation in 10 Gbps transmission.

Forecasting Housing Demand with Big Data

  • Kim, Han Been;Kim, Seong Do;Song, Su Jin;Shin, Do Hyoung
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.44-48
    • /
    • 2015
  • Housing price is a key indicator of housing demand. Actual Transaction Price Index of Apartment (ATPIA) released by Korea Appraisal Board is useful to understand the current level of housing price, but it does not forecast future prices. Big data such as the frequency of internet search queries is more accessible and faster than ever. Forecasting future housing demand through big data will be very helpful in housing market. The objective of this study is to develop a forecasting model of ATPIA as a part of forecasting housing demand. For forecasting, a concept of time shift was applied in the model. As a result, the forecasting model with the time shift of 5 months shows the highest coefficient of determination, thus selected as the optimal model. The mean error rate is 2.95% which is a quite promising result.

  • PDF

A small-area implementation of cryptographic processor for 233-bit elliptic curves over binary field (233-비트 이진체 타원곡선을 지원하는 암호 프로세서의 저면적 구현)

  • Park, Byung-Gwan;Shin, Kyung-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.7
    • /
    • pp.1267-1275
    • /
    • 2017
  • This paper describes a design of cryptographic processor supporting 233-bit elliptic curves over binary field defined by NIST. Scalar point multiplication that is core arithmetic in elliptic curve cryptography(ECC) was implemented by adopting modified Montgomery ladder algorithm, making it robust against simple power analysis attack. Point addition and point doubling operations on elliptic curve were implemented by finite field multiplication, squaring, and division operations over $GF(2^{233})$, which is based on affine coordinates. Finite field multiplier and divider were implemented by applying shift-and-add algorithm and extended Euclidean algorithm, respectively, resulting in reduced gate counts. The ECC processor was verified by FPGA implementation using Virtex5 device. The ECC processor synthesized using a 0.18 um CMOS cell library occupies 49,271 gate equivalents (GEs), and the estimated maximum clock frequency is 345 MHz. One scalar point multiplication takes 490,699 clock cycles, and the computation time is 1.4 msec at the maximum clock frequency.

Implementation of an LFM-FSK Transceiver for Automotive Radar

  • Yoo, HyunGi;Park, MyoungYeol;Kim, YoungSu;Ahn, SangChul;Bien, Franklin
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.4 no.4
    • /
    • pp.258-264
    • /
    • 2015
  • The first 77 GHz transceiver that applies a heterodyne structure-based linear frequency modulation-frequency shift keying (LFM-FSK) front-end module (FEM) is presented. An LFM-FSK waveform generator is proposed for the transceiver design to avoid ghost target detection in a multi-target environment. This FEM consists of three parts: a frequency synthesizer, a 77 GHz up/down converter, and a baseband block. The purpose of the FEM is to make an appropriate beat frequency, which will be the key to solving problems in the digital signal processor (DSP). This paper mainly focuses on the most challenging tasks, including generating and conveying the correct transmission waveform in the 77 GHz frequency band to the DSP. A synthesizer test confirmed that the developed module for the signal generator of the LFM-FSK can produce an adequate transmission signal. Additionally, a loop back test confirmed that the output frequency of this module works well. This development will contribute to future progress in integrating a radar module for multi-target detection. By using the LFM-FSK waveform method, this radar transceiver is expected to provide multi-target detection, in contrast to the existing method.

A Novel IPT System Based on Dual Coupled Primary Tracks for High Power Applications

  • Li, Yong;Mai, Ruikun;Lu, Liwen;He, Zhengyou
    • Journal of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.111-120
    • /
    • 2016
  • Generally, a single phase H-bridge converter feeding a single primary track is employed in conventional inductive power transfer systems. However, these systems may not be suitable for some high power applications due to the constraints of the semiconductor switches and the cost. To resolve this problem, a novel dual coupled primary tracks IPT system consisting of two high frequency resonant inverters feeding the tracks is presented in this paper. The primary tracks are wound around an E-shape ferrite core in parallel which enhances the magnetic flux around the tracks. The mutual inductance of the coupled tracks is utilized to achieve adjustable power sharing between the inverters by configuring the additional resonant capacitors. The total transfer power can be continuously regulated by altering the pulse width of the inverters' output voltage with the phase shift control approach. In addition, the system's efficiency and the control strategy are provided to analyze the characteristic of the proposed IPT system. An experimental setup with total power of 1.4kW is employed to verify the proposed system under power ratios of 1:1 and 1:2 with a transfer efficiency up to 88.7%. The results verify the performance of the proposed system.

Effect of Bias Magnetic Field on Magnetoelectric Characteristics in Magnetostrictive/Piezoelectric Laminate Composites

  • Chen, Lei;Luo, Yulin
    • Journal of Magnetics
    • /
    • v.20 no.4
    • /
    • pp.347-352
    • /
    • 2015
  • The magnetoelectric (ME) characteristics for Terfenol-D/PZT laminate composite dependence on bias magnetic field is investigated. At low frequency, ME response is determined by the piezomagnetic coefficient $d_{33,m}$ and the elastic compliance $s_{33}^H$ of magnetostrictive material, $d_{33,m}$ and $s_{33}^H$ for Terfenol-D are inherently nonlinear and dependent on $H_{dc}$, leading to the influence of $H_{dc}$ on low-frequency ME voltage coefficient. At resonance, the mechanical quality factor $Q_m$ dependences on $H_{dc}$ results in the differences between the low-frequency and resonant ME voltage coefficient with $H_{dc}$. In terms of ${\Delta}E$ effect, the resonant frequency shift is derived with respect to the bias magnetic field. Considering the nonlinear effect of magnetostrictive material and $Q_m$ dependence on $H_{dc}$c, it predicts the low-frequency and resonant ME voltage coefficients as a function of the dc bias magnetic field. A good agreement between the theoretical results and experimental data is obtained and it is found that ME characteristics dependence on $H_{dc}$ are mainly influenced by the nonlinear effect of magnetostrictive material.

Underwater Acoustic wireless Communication using offset PSK (오프셋 위상변조 방식을 이용한 수중에서의 파라메트릭 음향 무선통신)

  • Kim, Kap-Su;Lim, Yong-Kon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.10a
    • /
    • pp.231-234
    • /
    • 2008
  • The paper proposed the new underwater wireless communication system fitted to non-linear acoustic channel. Generally, in non-linear acoustic channel, one used to do acoustic communication using parametric effect that is some effect caused from acoustic wave having frequency different of two primary acoustic wave frequency. In the paper, Offset PSK communication method fitted to non-linear acoustic channel was proposed, and it was demonstrated through simulations.

  • PDF

Study on the Nonlinear Electromagnetic Acoustic Resonance Method for the Evaluation of Hidden Damage in a Metallic Material (금속 재료의 잠닉손상 평가를 위한 비선형 전자기음향공진 기법에 관한 연구)

  • Cho, Seung-Wan;Cho, Seung-Hyun;Park, Choon-Su;Seo, Dae-Cheol;Jhang, Kyung-Young
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.4
    • /
    • pp.277-282
    • /
    • 2014
  • Recently, much attention has been paid to nonlinear ultrasonic technology as a potential tool to assess hidden damages that cannot be detected by conventional ultrasonic testing. One nonlinear ultrasonic technique is measurement of the resonance frequency shift, which is based on the hysteresis of the material elasticity. Sophisticated measurement of resonance frequency is required, because the change in resonance frequency is usually quite small. In this investigation, the nonlinear electromagnetic acoustic resonance (NEMAR) method was employed. The NEMAR method uses noncontact electromagnetic acoustic transducers (EMATs) in order to minimize the effect of the transducer on the frequency response of the object. Aluminum plate specimens that underwent three point bending fatigue were tested with a shear wave EMAT. The hysteretic nonlinear parameter ${\alpha}$, a key indicator of damage, was calculated from the resonance frequency shift at several levels of input voltage. The hysteretic nonlinear parameter of a damaged sample was compared to that of an intact one, showing a difference in the values.

A Multicarrier CDMA System for Multipath and Doppler Diversity (다중경로 및 도플러 다이버시티를 위한 멀티캐리어 CDMA 시스템)

  • Park Hyung-Kun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.1
    • /
    • pp.29-37
    • /
    • 2005
  • One of the principal disadvantages of multicarrier modulation technique is the sensitivity to the frequency offset introduced by Doppler shift. This frequency offset introduces inter-carrier interference (ICI) among the multiplicity of carriers in the multicarrier modulated signal. However, Doppler spread induced by temporal channel variations can Provide another means for diversity. In this paper, we propose a modified multicarrier code division multiple access (CDMA) system to exploit Doppler diversity as well as multipath diversity. The key work of our framework is a canonical time-frequency-based decomposition of the mobile wireless channel into series of independent fading channel. The decomposition naturally leads to a time-frequency generalization of the Rake receiver that exploits both multipath and Doppler diversity.