• 제목/요약/키워드: Frequency Response Model

검색결과 1,404건 처리시간 0.028초

Practical Considerations for Hardware Implementations of the Auditory Model and Evaluations in Real World Noisy Environments

  • Kim, Doh-Suk;Jeong, Jae-Hoon;Lee, Soo-Young;Kil, Rhee M.
    • The Journal of the Acoustical Society of Korea
    • /
    • 제16권1E호
    • /
    • pp.15-23
    • /
    • 1997
  • Zero-Crossings with Peak Amplitudes(ZCPA) model motivated by human auditory periphery was proposed to extract reliable features speech signals even in noisy environments for robust speech recognition. In this paper, some practical considerations for digital hardware implementations of the ZCPA model are addressed and evaluated for recognition of speech corrupted by several real world noises as well as white Gaussian noise. Infinite impulse response(IIR) filters which constitute the cochliar filterbank of the ZCPA are replaced by hamming bandpass filters of which frequency responses are less similar to biological neural tuning curves. Experimental results demonstrate that the detailed frequency response of the cochlear filters are not critical to performance. Also, the sensitivity of the model output to the variations in microphone gain is investigated, and results in good reliability of the ZCPA model.

  • PDF

회전축계의 진동해석을 위한 지지구조물의 등가모델에 관한 연구 (A Study on the Equivalent Model of the Support Structure for Rotordynamic Analysis)

  • 최복록;박진무
    • 소음진동
    • /
    • 제10권1호
    • /
    • pp.153-159
    • /
    • 2000
  • This paper presents a new method for including the dynamic stiffness of the stationary parts in rotordynamic analysis. As a consequence of the support dynamics, critical speeds are varied and/or additional critical speeds are introduced. Therefore, dynamic effects of the support are often significant in high speed turbomachinery, but most of analysis has considered the support as a rigid body or a simple structure. The proposed method is based on the coupled characteristics of the driving point and transfer frequency response functions of the support system to model the equivalent spring-mass series in finite element analysis. To demonstrate the applicability of the simulation procedures provided, it is applied to the rotor model of the double suction centrifugal pump. Results of the suggested equivalent-support rotor model including coupled effects agree well with the entire pump model.

  • PDF

Coupled foot-shoe-ground interaction model to assess landing impact transfer characteristics to ground condition

  • Kim, S.H.;Cho, J.R.;Choi, J.H.;Ryu, S.H.;Jeong, W.B.
    • Interaction and multiscale mechanics
    • /
    • 제5권1호
    • /
    • pp.75-90
    • /
    • 2012
  • This paper investigates the effects of sports ground materials on the transfer characteristics of the landing impact force using a coupled foot-shoe-ground interaction model. The impact force resulting from the collision between the sports shoe and the ground is partially dissipated, but the remaining portion transfers to the human body via the lower extremity. However, since the landing impact force is strongly influenced by the sports ground material we consider four different sports grounds, asphalt, urethane, clay and wood. We use a fully coupled 3-D foot-shoe-ground interaction model and we construct the multi-layered composite ground models. Through the numerical simulation, the landing impact characteristics such as the ground reaction force (GRF), the acceleration transfer and the frequency response characteristics are investigated for four different sports grounds. It was found that the risk of injury, associated with the landing impact, was reduced as the ground material changes from asphalt to wood, from the fact that both the peak vertical acceleration and the central frequency monotonically decrease from asphalt to wood. As well, it was found that most of the impact acceleration and frequency was dissipated at the heel, then not much changed from the ankle to the knee.

자동차 시트벨트의 진동특성 개선을 위한 구조에 관한 연구 (A Study on the Structure for the Improvement of Vibration Characteristics of a Vehicle Seatbelt)

  • 김창희;오채은;김태우;송철우;이석순
    • 한국기계가공학회지
    • /
    • 제19권2호
    • /
    • pp.97-102
    • /
    • 2020
  • To prevent vibration of a vehicle's interior parts due to external impacts, the vehicle should be designed to reduce vibration and increase rigidity. In this paper, we conducted a vehicle test in which the vibration characteristics of a seatbelt resulting from the impact of a person closing a car door were measured and analyzed. A correlation analysis was performed using the finite analysis method. Based on this, a sensitivity analysis was performed, and an improved model was designed. We compared the natural frequencies and mode shapes of the improved and the initial models, which confirmed that the natural frequency of the improved model was more than 10 Hz higher than that of the initial model. Moreover, the response frequency of the improved model was three times higher than the input frequency applied in the vehicle test.

Frequency response of elastic nanocomposite beams containing nanoparticles based on sinusoidal shear deformation beam theory

  • Hou, Suxia;Wu, Shengbin;Luo, Jijun;Nasihatgozar, Mohsen;Behshad, Amir
    • Steel and Composite Structures
    • /
    • 제45권4호
    • /
    • pp.555-562
    • /
    • 2022
  • Improving the mechanical properties of concrete in the construction industry in order to increase resistance to dynamic and static loads is one of the essential topics for researchers. In this work, vibration analysis of elastic nanocomposite beams reinforced by nanoparticles based on mathematical model is presented. For modelling of the strucuture, sinusoidal shear deformation beam theory (SSDBT) is utilized. Mori-anak model model is utilized for obtaining the effective properties of the strucuture including agglomeration influences. Utilizing the energy method and Hamilton's principal, the motion equations are calculated. The frequency of the elastic nanocomposite beam is obtanied by analytical method. The aim of this work is investigating the effects of nanoparticles volume percent and agglomeration, length and thickness of the beam on the frequency of the structure. The results show that the with enhancing the nanoparticles volume percent, the frequency is increased. In addition, the water absorption of the concrete is presented in this article.

수동감쇠 적층보의 진동해석을 위한 스펙트럴요소법의 적용 (Application of Spectral Element Method for the Vibration Analysis of Passive Constrained Layer Damping Beams)

  • 송지훈;홍석윤
    • 한국음향학회지
    • /
    • 제28권1호
    • /
    • pp.25-31
    • /
    • 2009
  • 본 논문에서는 수동감쇠 적층보에 대한 스펙트럴요소법을 유도하였다. 수동감쇠 적층보의 중심층인 점탄성층은 주파수에 따라 값이 변하는 복소 계수를 가지고 있다. 그래서 점탄성층의 주파수 종속적인 복소 계수를 계산하기 위하여, 스펙트럴요소법을 주파수축 상에서 파동해로부터 얻은 엄밀해를 기반으로 하는 동적형상함수를 사용하여 유도하였다. 유도된 수동감쇠 적층보에 대한 스펙트럴요소의 신뢰성과 정밀도를 검증하기 위하여 스펙트럴요소법과 유한요소법을 사용하여 구한 주파수응답함수와 동적응답을 비교하였다. 비교 결과 수동감쇠 적층보에 대한 스펙트럴요소가 유한요소에 비해서 보다 신뢰성 있는 결과를 제공하는 것을 알 수 있었다.

구조물과 부계통간의 연계방법에 따른 지진응답 분석 (Analysis of Seismic Response due to the Dynamic Coupling Between a Primary Structure and Secondary System)

  • 정광섭;곽신영;최인길;임승현
    • 한국지진공학회논문집
    • /
    • 제24권2호
    • /
    • pp.87-93
    • /
    • 2020
  • Seismic responses due to the dynamic coupling between a primary structure and secondary system connected to a structure are analyzed in this study. The seismic responses are compared based on dynamic coupling criteria and according to the error level in the natural frequency, with the recent criteria being reliant on the error level in the spectral displacement response. The acceleration responses and relative displacement responses of a primary structure and a secondary system for a coupled model and two different decoupled models of two degrees-of-freedom system are calculated by means of the time integration method. Errors in seismic responses of the uncoupled models are reduced with the recent criteria. As the natural frequency of the secondary system increases, error in the natural frequency decreases, but seismic responses of uncoupled models can be underestimated compared to that of coupled model. Results in this paper can help determine dynamic coupling and predict uncoupled models' response conservatism.

자이로콥터의 동적 유한요소모델링 및 구조진동해석 (Dynamic Finite Element Modeling and Structural Vibration Analysis of a Gyrocopter)

  • 정세운;양용준;김현정;제상언;조태환;김동현
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 춘계학술대회논문집
    • /
    • pp.813-820
    • /
    • 2005
  • In this study, finite element modeling and structural vibration analyses of a gyrocopter have been conducted considering dynamic hub-loads due to rotating blades. For this research, 3D CATIA models for most mechanical parts are exactly prepared and assembled into the final aircraft configuration. Then the dynamic finite element model including several non-structural parts are constructed based on the exact 3D CAD data. Computational structural dynamics technique based on finite element method is applied using both MSC/NASTRAN and developed in-house code which can largely reduce the pre and postprocessing time of general transient dynamic analyses. Modal based transient and frequency response analyses are used to efficiently investigate vibration characteristics. The results include natural frequency comparison for different fuel and pilot conditions, fundamental natural mode shapes, frequency responses and transient acceleration responses of the present gyrocopter model.

  • PDF

방향성 주파수 응답 함수를 이용한 일반 회전체의 비대칭성 규명 (Identification of Asymmetry in General Rotors from Directional Frequency Response Functions)

  • 서윤호;강성우;이종원
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 춘계학술대회논문집
    • /
    • pp.941-944
    • /
    • 2005
  • Asymmetry of rotor systems is an important factor for identification of dynamic characteristics including the stability and response of rotors and for condition monitoring. In this work, asymmetry of rotors is identified by applying curve-fitting method to the directional frequency response functions (dFRFs), which are known as a powerful tool for detecting the presence and degree of asymmetry. This method minimizes least square error between analytical and measured dFRFs by iteratively updating physical parameters associated with rotor asymmetry. The effectiveness of the identification method is demonstrated by experiments with a laboratory test rotor.

  • PDF

ATS 장치에서 지상자와 차상자 사이의 상호인덕턴스가 주파수 응답에 미치는 영향 (A Study on the Influence of Mutual Inductance between Wayside Transmitter and On-board Receiver upon Frequency Response in ATS Device)

  • 김민석;김민규;이종우
    • 전기학회논문지
    • /
    • 제61권3호
    • /
    • pp.384-393
    • /
    • 2012
  • Railroad signaling systems perform controlling the distance and routes between trains. Signaling methods on the wayside are to control passively the train speed by using signal flags which are installed on the wayside. ATS(Automatic Train Stop) device is used as the signaling method on the wayside in Korea. The ATS device is assistance equipment of engineers. Signal information is transmitted by combining mutual inductance between the wayside transmitter and on-board receiver. The wayside transmitter performs changing oscillation frequency according to the signal information. The on-board receiver performs controlling the train by receiving the frequency. Currently, the oscillation frequency on the on-board receiver is 78[kHz] in case of normal state. When the on-board receiver is over the wayside transmitter, the oscillation frequency is changed by capacitors of the wayside transmitter according to signal flags. In case of changing the oscillation frequency, the waveform is modified in the wayside transmitter and on-board receiver. This phenomenon is that other signals or communication frequency are included. In this paper, electric model between the wayside transmitter and on-board receiver is suggested and frequency response in the wayside transmitter and on-board receiver including other signals is estimated by the coupling coefficient. Also, the value of coupling coefficient is proposed to exclude other signals and demonstrated by using Matlab and PSpice program.