• Title/Summary/Keyword: Frequency Response

Search Result 5,503, Processing Time 0.037 seconds

Active Vibration Control of Clamped Beams Using Filtered Velocity Feedback Controllers (Filtered Velocity Feedback 제어기를 이용한 양단지지보의 능동진동제어)

  • Shin, Chang-Joo;Hong, Chin-Suk;Jeong, Weui-Bong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.5
    • /
    • pp.447-454
    • /
    • 2011
  • This paper reports a filtered velocity feedback(FVF) controller, which is an alternative to direct velocity feedback(DVFB) controller. The instability problems due to high frequency response under DVFB can be alleviated by the suggested FVF controller. The FVF controller is designed to filter out the unstable high frequency response. The FVF controller and the dynamics of clamped beams under forces and moments are first formulated. The effects of the design parameters(cut-off frequency, gain, and damping ratio) on the stability and the performance are then investigated. The cut-off frequency should be selected not to affect the system stability. The magnitude of the open loop transfer function(OLTF) at the cut-off frequency should be small. As increasing the gain of the FVF controller, the magnitude of the OLTF is increased, so that the closed loop response can be reduced more. The enhancement of the OLTF at the cut-off frequency is reduced but the phase behavior around the cut-off frequency is distorted, as the damping ratio is increased. The control performance is finally estimated for the clamped beam. More than 10 dB reductions in velocity response can be achieved at the modal frequencies from the first to eighth modes.

Active Vibration Control of Clamped Beams using Filtered Velocity Feedback Controllers (Filtered Velocity Feedback 제어기를 이용한 양단지지보의 능동진동제어)

  • Shin, Chang-Joo;Hong, Chin-Suk;Jeong, Weui-Bong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.264-270
    • /
    • 2011
  • This paper reports a filtered velocity feedback (FVF) controller, which is an alternative to direct velocity feedback (DVFB) controller. The instability problems due to high frequency response under DVFB can be alleviated by the suggested FVF controller. The FVF controller is designed to filter out the unstable high frequency response. The FVF controller and the dynamics of clamped beams under forces and moments are first formulated The effects of the design parameters (cut-off frequency, gain, and damping ratio) on the stability and the performance are then investigated. The cut-off frequency should be selected not to affect the system stability. The magnitude of the open loop transfer function (OLTF) at the cut-off frequency should be small. As increasing the gain of the FVF controller, the magnitude of the OLTF is increased, so that the closed loop response can be reduced more. The enhancement of the OLTF at the cut-off frequency is reduced but the phase behavior around the cut-off frequency is distorted, as the damping ratio is increased The control performance is finally estimated for the clamped beam. More than 10dB reductions in velocity response can be achieved at the modal frequencies from the first to eighth modes.

  • PDF

Harmonic analysis of moderately thick symmetric cross-ply laminated composite plate using FEM

  • Narwariya, Manoj;Choudhury, Achintya;Sharma, Avadesh K.
    • Advances in Computational Design
    • /
    • v.3 no.2
    • /
    • pp.113-132
    • /
    • 2018
  • This paper presents the vibration and harmonic analysis of orthotropic laminated composite plate. The response of plate is determined using Finite Element Method. The eight noded shell 281 elements are used to analyze the orthotropic plates and results are obtained so that the right choice can be made in applications such as aircrafts, rockets, missiles, etc. to reduce the vibration amplitudes. Initially the model response for orthotropic plate and harmonic response for isotropic plate is verified with the available literature. The results are in good agreement with the available literature. Numerical results for the natural frequency and harmonic response amplitude are presented. Effects of boundary conditions, thickness to width ratio and number of layers on natural frequency and harmonic response of the orthographic plates are also investigated. The natural frequency, mode shape and harmonic analysis of laminated composite plate has been determined using finite element package ANSYS.

Relationship Between the Resonance Frequency and QTS for Microspeaker (마이크로스피커에서 공명진동수와 QTS 사이의 연관성)

  • Oh, Sei-Jin
    • Korean Journal of Materials Research
    • /
    • v.21 no.7
    • /
    • pp.403-409
    • /
    • 2011
  • Micro speakers are used to reproduce sound in small electric and information and communications devices, such as cellular phones, PMPs, and MP3 players. The acoustical properties and sound quality, which are changed due to the decreased size of the speaker, are often adjusted varying the type and thickness of the diaphragm. The most widely used diaphragm material is thin polymer. It was previously reported by the author of this paper that the resonance frequency of a micro speaker is changed by the type and thickness of a polymer diaphragm. In this paper, the frequency response near the resonance frequency of a micro speaker was studied as functions of the type and thickness of the polymer diaphragm. While $R_{max}$ and $R_{DC}$ were affected by the type and thickness, an analysis of the electrical impedance curve revealed that $R_o(= R_{max}/R_{DC})$ and ${\Delta}f$ were not changed. Thus, $Q_{TS}$ which was function of $R_o$, ${\Delta}f$, and the resonance frequency, is only related to the resonance frequency. The increase of the resonance frequency led to a proportional rise of $Q_{TS}$. The change of the frequency response near the resonance frequency was not dependent on the type or thickness of the polymer diaphragm, but was affected by the resonance frequency.

Development of Impact Factor Response Spectrum based on Frequency Response of Both Ends-Fixed Beam for Application to Continuous Bridges (연속교 적용을 위한 양단고정지지 보의 진동수 기반 충격계수 응답스펙트럼 개발)

  • Roh, Hwasung;Lee, Huseok;Park, Kyung-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.12
    • /
    • pp.301-306
    • /
    • 2016
  • In bridge performance assessments, a new load carrying capacity evaluation model of simple bridges was proposed, which is based on the developed simple support impact factor spectrum. In this paper, a conservative assumption that the inner span with the both ends fixed boundary condition is ideal for applying the impact factor response spectrum for continuous bridges. The impact factor response spectrum has been proposed based on this assumption. The response spectrum by comparing the numerical analysis result and actual measurement data verified the applicability. The analysis was loading the moving load of DB-24 in a six-span continuous bridge, which was the same as the actual measurement data, the dynamic response was measured in the fourth span. The frequency of the bridge was obtained by FFT on the acceleration response and the span-frequency of sample bridge was calculated by the frequency. The impact factor of the sample bridge was determined by applying the span-frequency of the bridge to the proposed response spectrum; it was similar to the result of comparing the actual measured impact factor. Therefore, the method using the impact factor response spectrum based on the frequency response of both ends-fixed beam was found to be applicable to an actual continuous bridge.

Acoustical Dynamic Response Analysis of a Gas Turbine Combustor Using a Sine-Sweep Forcing Model (사인-스윕 가진 모델을 통한 가스터빈 연소기의 음향 동적 반응 해석)

  • Son, Juchan;Kim, Daesik
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.26 no.4
    • /
    • pp.1-9
    • /
    • 2022
  • In the current study, in order to understand the dynamic response characteristics of the system according to the external acoustic forcing, a numerical approach was developed by adding an sign-sweep forcing function to the existing network model. Through this model, the sensitivity of frequency and pressure amplitude changes according to system parameters such as the physical dimensions and boundary conditions of the target combustor was analyzed in a wide frequency range. Analysis results of dynamic response characteristics of the target combustor are shown that the frequency regime with high dynamic pressure response was similar to the instability frequency range measured in the same combustor, and in particular, the response of the system depends greatly on the location of the acoustic forcing source term.

Assessment of the Generators Constant from Frequency Response Properties of Korean Power System (우리나라 계통의 주파수응답특성에 의한 발전기정수 산정에 관한 연구)

  • Jeong, Bong-Sang;Chun, Yeong-Han;Kim, Il-Dong;Yang, Jeong-Jae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.4
    • /
    • pp.688-693
    • /
    • 2009
  • The response characteristics of power system frequency are determined by generator droop characteristics and load damping properties. The characteristics of governor droops are termed by generators constant, while those of load damping by load constant. In this paper, the generator constant and the load constant are assessed by measured data at the event of generator trips.

Nonlinear Frequency Response Analysis of Hydrodynamic Journal Bearing Under External Disturbance (외란을 받는 저널 베어링의 비선형 주파수 응답해석)

  • 노병후;김경웅
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1998.04a
    • /
    • pp.241-245
    • /
    • 1998
  • The traditional approach is to characterize the behavior and performance of fluid film hydrodynamic journal bearings by means of linearized bearing analysis. The objective of this paper is to examine the nonlinear characteristics of the journal bearing when an external sinusoidal shock is given to the system. The oil film force is obtained by solving the finite width Reynolds equation at each time step by the solution of the column method. Frequency response functions obtained from both linear and nonlinear bearing simulations are compared with each other.

  • PDF

A Study on Analysis of Time Delay Model Using Autoregressive Method for Mobile Communication Channels (AR 모델을 이용한 이동 통신 채널의 시간 지연 해석기법에 관한 연구)

  • 이형권;류은숙;이종길
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.29-32
    • /
    • 1999
  • In this study, the time delay model were simulated using the well-known AR model. Frequency response of the time delay model can be obtained by mapping AR model to JTC model in the time domain. That is, from the few measurement data in JTC model, the channel frequency response can be obtained by the estimation of AR model parameters. From this channel frequency response, the time delay model can be obtained using Fourier transformation. To prove the validity of the suggested method, three models of JTC were shown and analyzed.

  • PDF

Frequency Response Properties of SAW Tansversal Filters by Impulse Modeling (임펄스 모델에 의한 SAW Transversal Filters의 주파수 응답 특성)

  • 손헌영;윤영섭
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.173-176
    • /
    • 1999
  • Frequency responses of the surface acoustic wave(SAW) filters are simulated by using the impulse modeling. The simulation technique of the SAW filters is to use the Fourier transformation to make a correspondence between the impulse response of the filter and the taps in the delay line. Since the Fourier series must be truncated after a finite number of terms, window functions are often used to weight the coefficients to obtain the desirable side-lobe level and bandwidth. The filter design is operated through the iterative simulation procedures. The design process is capable of yielding filters with optimized frequency response characteristics.

  • PDF