• Title/Summary/Keyword: Frequency Mixer

Search Result 275, Processing Time 0.029 seconds

A Design on LNA/Down-Mixer for MB-OFDM m Using 0.18 μm CMOS (CMOS를 이용한 MB-OFDM UWB용 LNA/Down-Mixer 설계)

  • Park Bong-Hyuk;Lee Seung-Sik;Kim Jae-Young;Choi Sang-Sung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.2 s.93
    • /
    • pp.139-143
    • /
    • 2005
  • In this paper, we propose the design on LNA and Down-mixer for MB-OFDM UWB using $0.18\;{\mu}m$ CMOS. LNA, Down-mixer design result shows that it covers the frequency range ken 3 GHz to 5 GHz. The LNA gain is larger than 12.8 dB, and noise figure about 2.6 dB. Double balanced differential down-mixer is designed less than 2 dB gainflatness, and it has over 30 dB LO leakage, feedthrough characteristics.

High LO-RF Isolation 94 GHz MMIC Single-balanced Mixer (높은 LO-RF 격리 특성의 94 GHz MMIC Single-balanced Mixer)

  • An, Dan;Lee, Bok-Hyung;Lim, Byeong-Ok;Kim, Sung-Chan;Lee, Sang-Jin;Lee, Mun-Kyo;Shin, Dong-Hoon;Park, Hyung-Moo;Park, Hyun-Chang;Kim, Sam-Dong;Rhee, Jin-Koo
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.765-768
    • /
    • 2005
  • In this paper, high LO-RF isolation 94 GHz MMIC single-balanced mixer was designed and fabricated using a branch line coupler and a ${\lambda}/4$ transmission line. The 94 GHz MMIC single-balanced mixer was designed using the 0.1 ${\mu}m$ InGaAs/InAlAs/GaAs Metamorphic HEMT(MHEMT) diode. The fabricated MHEMT was obtained the cut-off frequency($f_T$) of 189 GHz and the maximum oscillation frequency($f_{max}$) of 334 GHz. The designed MMIC single-balanced mixer was fabricated using 0.1 ${\mu}m$ MHEMT MMIC process. From the measurement, the conversion loss of the single-balanced mixer was 23.1 dB at an LO power of 10 dBm. The LO-RF isolations of single-balanced mixer was obtained 45.5 dB at 94.19 GHz. We obtained in this study a higher LO-RF isolation compared to some other balanced mixers in millimeter-wave frequencies.

  • PDF

Design of a Distributed Mixer Using Dual-Gate MESFET's (Dual-Gate MESFET를 이용한 분포형 주파수 혼합기의 설계)

  • Oh, Yang-Hyun;An, Jeong-Sig;Kim, Han-Suk;Lee, Jong-Arc
    • Journal of IKEEE
    • /
    • v.2 no.1 s.2
    • /
    • pp.15-23
    • /
    • 1998
  • In this paper, distributed mixer is studied at microwave frequency. The circuit of distributed mixer composed of gate 1,2, drain transmission lines, matching circuits in input and output terminal, DGFET's. For impedance matching of input and output port at higher frequency, image impedance concept is introduced. In distributed mixer, a DGFET's impedances are absorbed by artificial transmission line, this type of mixer can get a very broadband characteristics compared to that of current systems. A RF/LO signal is applied to each gate input port, and are excited the drain transmission line through transcondutance of the DGFET's. The output signals from each drain port of DGFET's added in same phases. We designed and frabricated the distributed mixer, and a conversion gain, noise figure, bandwidth, LO/RF isolation of the mixer are shown through computer simulation and experimentation.

  • PDF

An E-Band Compact MMIC Single Balanced Diode Mixer for an Up/Down Frequency Converter (E-대역 상/하향 주파수 변환기용 소형 MMIC 단일 평형 다이오드 혼합기)

  • Jeong, Jin-Cheol;Yom, In-Bok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.5
    • /
    • pp.538-544
    • /
    • 2011
  • This paper presents a compact single balanced diode mixer fabricated using a 0.1 ${\mu}M$ GaAs p-HEMT commercial process for an E-band frequency up/down converter. This mixer includes a LO balun employing a Marchand balun with a good RF performance. In order to improve the port-to-port isolation, a high pass filter and a low pass filter are include in this mixer at the RF and IF ports, respectively. The fabricated mixer with a very compact size of 0.58 mm2(0.85 mm${\times}$0.68 mm) exhibits a conversion loss of 8~12 dB and an input P1dB of 1~5 dBm at the LO power of 10 dBm from 71~86 GHz.

A CMOS Frequency Synthesizer Block for MB-OFDM UWB Systems

  • Kim, Chang-Wan;Choi, Sang-Sung;Lee, Sang-Gug
    • ETRI Journal
    • /
    • v.29 no.4
    • /
    • pp.437-444
    • /
    • 2007
  • A CMOS frequency synthesizer block for multi-band orthogonal frequency division multiplexing ultra-wideband systems is proposed. The proposed frequency synthesizer adopts a double-conversion architecture for simplicity and to mitigate spur suppression requirements for out-of-band interferers in 2.4 and 5 GHz bands. Moreover, the frequency synthesizer can consist of the fewest nonlinear components, such as divide-by-Ns and a mixer with the proposed frequency plan, leading to the generation of less spurs. To evaluate the feasibility of the proposed idea, the frequency synthesizer block is implemented in 0.18-${\mu}m$ CMOS technology. The measured sideband suppression ratio is about 32 dBc, and the phase noise is -105 dBc/Hz at an offset of 1 MHz. The fabricated chip consumes 17.6 mA from a 1.8 V supply, and the die-area including pads is $0.9{\times}1.1\;mm^2$.

  • PDF

Design of a Single-Balanced Diode Mixer at 24GHz (24GHz대역 단일 평형 다이오드 주파수 혼합기의 설계 및 제작)

  • 강상록;박창현;김장구;조현식;한석균;최병하
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.10a
    • /
    • pp.66-70
    • /
    • 2003
  • In this paper a plannar singly balanced diode Miter for 24GHz band application is designed and implemented using a microstrip line and two schottky barrier beam lead mixer diodes. The implemented mixer have a conversion loss of 6 [dB], LO/RF isolation of 23 [dB], input 1dB compression point of 4 [dBm]. this diode mixer would be useful for homedyne radar.

  • PDF

A Monolithic 5 GHz Image Reject Mixer for Wireless LAN applications

  • Ho-Young Kim;Jae-Hyun Cho;Jung-Ho Park
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.26 no.12B
    • /
    • pp.1733-1740
    • /
    • 2001
  • A monolithic 5 GHz image reject mixer using a 0.5-m GaAs MESFET technology is designed and simulated. The Mixer exhibits a 13.56 dB down-conversion gain, a SSB (Single SideBand) noise figure of 11.91 dB, an input IP3 (third order intercept point) of -3.73 dBm and a PldB (1-dB compression point) of -11.0 dBm. The critical issue in the image reject mixer is the phase accuracy and magnitude balance of the 90 phase shifting network. The proposed image reject mixer realizes a 90 phase shifter on chip. This phase shifting network does not need any phase adjusting to achieve the phase error specification of 3 over a frequency range from 800 MHz to 1GHz. The simulated overall image rejection ratio is better than 50 dB.

  • PDF

Design of CMOS Mixer improved Flicker Noise and Conversion Gain (Flicker Noise와 변환 이득 특성을 개선한 CMOS Mixer설계)

  • Lim, Tae-Seo;Kim, Hyeong-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1508-1509
    • /
    • 2007
  • 본 논문에서는 TSMC 0.18um공정을 이용한 무선통신 수신기용 직접변환 방식의 Double Balanced Mixer를 설계 하였다. 제안된 mixer는 current bleeding기법과 내부에 인덕터를 추가하여 기존의 Gilbert Cell구조의 mixer에 비해 변환 이득과 Flicker Noise특성을 향상 시켰다. 모의실험결과 2.45GHz에서 11dB의 변환이득을 나타내었으며 Flicker Noise의 corner frequency는 510kHz이고 이때 잡음특성은 10.8dB이다. 이 회로의 동작전압은 1.8V이며 소모 전력은 8.8mW이다.

  • PDF

Implementation of Down Converter for Ku-Band Application (Ku 대역용 주파수변환기의 구현)

  • 정동근;김상태;하천수
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.4 no.3
    • /
    • pp.527-536
    • /
    • 2000
  • This paper discusses the design of self-oscillating mixer type low noise down converter using the microwave field effect transistor. The mixer is consists of local oscillator in which high stability dielectric resonator and band pass filter to get rid of spurious oscillation at intermediate frequency stage. The microstrip antenna was integrated in the same substrate which generate 12.3GHz and low noise amplifier was also added after antenna using 3 stage of high electron mobility transistors. The output frequency from the local oscillator was chosen as 11.3GHz for the Ku-band application. The measured phase noise was -804dBc/Hz at 100kHz offset frequency, and the gain was 7~12dB in frequency range from 12.0GHz to 12.7GHz. The noise figure at intermediate frequency stage was 64H. The designed model shows less conversion loss than previous diode type mixer. The proposed mixer can be used in digital satellite broadcasting and communication system and expected to use in next generation low noise block design.

  • PDF

Design of A Compact Single-Balanced Mixer for UWB Applications

  • Mohyuddin, Wahab;Kim, In Bok;Choi, Hyun Chul;Kim, Kang Wook
    • Journal of electromagnetic engineering and science
    • /
    • v.17 no.2
    • /
    • pp.65-70
    • /
    • 2017
  • The design and implementation aspects of a new single-balanced mixer for ultra-wideband (UWB) applications are presented in this study. The proposed mixer utilizes a miniaturized UWB ring coupler as a balun, consisting of a pair of in-phase and inverted-phase transitional structures. The well-balanced UWB performance of the ring coupler, aside from the optimized diode matching, results in improved conversion loss and inter-port isolations for a wide bandwidth. The size of the implemented single-balanced diode mixer is reduced to about 60% of the area of the conventional single-balanced ring diode mixer. The measured results of the proposed mixer exhibit an average conversion loss of 7.5 dB (minimum 6.7 dB) and a port-to-port isolation of greater than 18 dB over a UWB frequency range of 3.1-10.6 GHz. The measured results agree well with the simulated results.