• Title/Summary/Keyword: Frequency Equalizer

Search Result 197, Processing Time 0.023 seconds

Analysis of Performance for SC-FDE Systems Using Proportional Adaptive Equalizer in $2GHz{\sim}10GHz$ Frequency Radio Channel Models ($2GHz{\sim}10GHz$ 무선 채널 환경에서 비례 적응형 등화기를 이용한 SC-FDE 시스템 구현과 성능분석)

  • Yang, Yong-Seok;Lee, Kyu-Tae
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.4C
    • /
    • pp.447-453
    • /
    • 2007
  • In the multipath fading channel, OFDM(Orthogonal Frequency Division Multiplexing)system possess the characteristics of ISI/ICIwith prefix, but a weak point of circuit complexity and PAPR problem. SC-FDE(Single Carrier with Frequency Domain Equalization) performance is similar to OFDM system, but equalizer is complex in frequency domain. In this paper, simple proportional equalizer offer for SC-FDE system, it useful method in the $2GHz{\sim}\;10GHz$ channel model such as indoor, outdoor, SUI. It prove using MATLAB simulation, speed faster then OFDM system, reduce terminal complexity in same test condition.

Implementation of an Intelligent Audio Graphic Equalizer System (지능형 오디오 그래픽 이퀄라이저 시스템 구현)

  • Lee Kang-Kyu;Cho Youn-Ho;Park Kyu-Sik
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.43 no.3 s.309
    • /
    • pp.76-83
    • /
    • 2006
  • A main objective of audio equalizer is for user to tailor acoustic frequency response to increase sound comfort and example applications of audio equalizer includes large-scale audio system to portable audio such as mobile MP3 player. Up to now, all the audio equalizer requires manual setting to equalize frequency bands to create suitable sound quality for each genre of music. In this paper, we propose an intelligent audio graphic equalizer system that automatically classifies the music genre using music content analysis and then the music sound is boosted with the given frequency gains according to the classified musical genre when playback. In order to reproduce comfort sound, the musical genre is determined based on two-step hierarchical algorithm - coarse-level and fine-level classification. It can prevent annoying sound reproduction due to the sudden change of the equalizer gains at the beginning of the music playback. Each stage of the music classification experiments shows at least 80% of success with complete genre classification and equalizer operation within 2 sec. Simple S/W graphical user interface of 3-band automatic equalizer is implemented using visual C on personal computer.

Design and Performance Improvement of Simultaneous Single Band Duplex System Using Turbo Equalizer (터보 등화기를 사용한 SSD 시스템 설계와 성능 개선)

  • An, Changyoung;Ryu, Heung-Gyoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.1
    • /
    • pp.28-35
    • /
    • 2014
  • In this paper, we propose a SSD(simultaneous single band duplex) system with turbo equalizer for full-duplex over harsh ISI(inter symbol interference) channel. The proposed system uses RF(radio frequency) cancellation and digital cancellation to cancel self-interference caused by simultaneous single band duplex communication. Also, using turbo equalizer, the proposed system equalizes signal after digital cancellation. In this paper, we design SSD system with turbo equalizer. And then we evaluate BER(bit error rate) performance of the proposed system comparison with SSD system with adaptive equalizer. We use simulink program to confirm BER performance of the proposed system. The simulation results shows that the proposed system equalizes received signal effectively over harsh ISI channel and BER performance of the proposed system is better than BER performance of SSD system with adaptive equalizer.

Efficient Estimation and Compensation of CFO and STO in Multi-carrier Communication System (다중 반송파 통신 시스템에서 효과적인 CFO와 STO추정 및 보상방법)

  • Lee, Hui-Kyu;Ryu, Heung-Gyoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.5A
    • /
    • pp.441-449
    • /
    • 2011
  • Sample timing offset (STO) and carrier frequency offset (CFO) are caused by inter-symbol interference (ISI), inter-carrier interference (ICI) and phase error in orthogonal frequency division multiplexing (OFDM) system. OFDM characteristic is sensitive about STO and CFO. So when ICI occurs, compensation is hard and complex equalizer is needed. In this paper, we propose an effective correction method using feedback process with pilot and synchronization symbol. After feedback with estimated value in frequency domain, STO and CFO are corrected by control sample & and holder and oscillator. As a result of simulation, we confirm that STO and CFO can be corrected without equalizer through feedback.

A Method of Selecting Filter Coefficient for Robust Data to Clock Equalizer in Optical Disc Drive (광 디스크 드라이브의 강인한 데이터-클럭 등화기 필터계수 선정)

  • Yeom, Dong-Hae;Kim, Jin-Kyu;Joo, Young-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.4
    • /
    • pp.793-796
    • /
    • 2010
  • The equalizer compensates a signal distorted by transmission lines and amplifying stages, so the signal can have uniform characteristics over all frequency range. The equalizer in ODD(Optical Disc Drive) improves the stability of the extracted clock from a received signal and the readability of an inserted disc by suppressing noise and ISI(Inter-Symbol Inference). The length of marks-spaces and track pitch on discs becomes shorter as the recording density of an optical media is higher, which causes noise and ISI. And, the sensitivity about the fluctuation of physical systems is higher as the optical devices become more complicate. This paper proposes a method to select the coefficient of built-in equalizer of ODD in order to maintain the quality of signals against noise and ISI caused by system fluctuation.

Design and Performance Evaluation of Equalizer for the S-DMT Cable Modem (S-DMT 케이블 모뎀의 등화기 설계 및 성능평가)

  • Cho, Byung-Hak
    • Journal of Digital Contents Society
    • /
    • v.7 no.2
    • /
    • pp.109-115
    • /
    • 2006
  • In this paper, we design and performance evaluate the equalizer for S-DMT table modem, which supports more channels and better quality symmetric mutimedia services over HFC network. We verified that both of the designed equalizers show good convergence characteristics and that the performance of the time domain equalizer is 1 dB better than that of the frequency domain equalizer overall range of Eb/No.

  • PDF

An Equalization Technique for OFDM Systems in Indoor Wireless Channel (실내 무선 채널에서 OFDM시스템의 등화 기법)

  • 한문용;이영진;김근희;서종수
    • Proceedings of the IEEK Conference
    • /
    • 2001.06a
    • /
    • pp.109-112
    • /
    • 2001
  • Recently, as demands for super-high speed broad band wireless multimedia service increase, variable researches to develop wireless LAN have been carried out. In this paper, we propose and analyze LS(Least Squares)-PSA(Pilot Symbol Assisted) equalizer which compensates for each subcarrier of different attenuations and phase response for OFDM(Orthogonal Frequency Division Multiplexing)-based indoor wireless LAN systems. The proposed equalizer enhances the $E_{b}$ $N_{o}$ performance of 3dB and 4dB at BER=10$^{-2}$ as compared with LS equalizer in AWGN channel and indoor wireless channel respectively..

  • PDF

6-Gbps Single-ended Receiver with Continuous-time Linear Equalizer and Self-reference Generator (기준 전압 발생기와 연속 시간 선형 등화기를 가진 6 Gbps 단일 종단 수신기)

  • Lee, Pil-Ho;Jang, Young-Chan
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.9
    • /
    • pp.54-61
    • /
    • 2016
  • A 6-Gbps single-ended receiver with a linear equalizer and a self-reference generator is proposed for a high-speed interface with the double data rate. The proposed single-ended receiver uses a common gate amplifier to increase a voltage gain for an input signal with low voltage level. The continuous-time linear equalizer which reduces gain to the low frequencies and achieves high-frequency peaking gain is implemented in the common gate amplifier. Furthermore, a self-reference generator, which is controlled with the resolution 2.1 mV using digital averaging method, is implemented to maximize the voltage margin by removing the offset noise of the common gate amplifier. The proposed single-ended receiver is designed using a 65-nm CMOS process with 1.2-V supply and consumes the power of 15 mW at the data rate of 6 Gbps. The peaking gain in the frequency of 3 GHz of the designed equalizer is more than 5 dB compared to that in the low frequency.

Performance Analysis of Adaptive Equalization in the Frequency Selective Fading Channel (주파수 선택성 페이딩 채널에서 적응 등화기의 성능 분석)

  • 노재호;김남용;강창언
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.16 no.3
    • /
    • pp.248-258
    • /
    • 1991
  • In this paper, ISI cancellation capabilites in the frequency selective fading channels of the equalizer emplouing individual tap LMS(ITLMS) algorithm and of th equalizer using the lattice structure have been investigated through the computer simulations in terms of bit error rate and convergence speed.

  • PDF

Fast Graphic Visualization of Frequency Response for Audio Equalizer (오디오 이퀄라이저를 위한 주파수 응답의 고속 그래픽 표현 방법)

  • Kim, Ki-Jun;Park, Hochong
    • Journal of Broadcast Engineering
    • /
    • v.20 no.4
    • /
    • pp.632-640
    • /
    • 2015
  • This paper proposes a new method for fast graphic visualization of accurate frequency response of audio equalizer (EQ). When a logarithmic frequency scale is used, a frequency response in high resolution is required for accurate low-band frequency response. However, the high-resolution frequency response requires a huge amount of computational load, which makes the real-time graphic visualization of frequency response impossible. In order to solve the problem of computational load, the proposed method utilizes a low-resolution virtual frequency response in the mid band. It first computes the virtual frequency response of each filter of EQ in the mid band, and then moves it to the target band so that the result corresponds to the desired filter response. Then, it determines the final frequency response of EQ by combining all filter responses. The experiments confirm that the proposed method provides the frequency response of EQ which has an equivalent shape to that computed in high frequency resolution with huge computational load.