• Title/Summary/Keyword: Frequency Domain Modeling

Search Result 239, Processing Time 0.024 seconds

Modeling and State Observer Design of HEV Li-ion Battery (하이브리드 전기자동차용 리튬이온 배터리 모델링 및 상태 관측기 설계)

  • Kim, Ho-Gi;Heo, Sang-Jin;Kang, Gu-Bae
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.13 no.5
    • /
    • pp.360-368
    • /
    • 2008
  • A lumped parameter model of Li-ion battery in hybrid electric vehicle(HEV) is constructed and system parameters are identified by using recursive least square estimation for different C-rates, SOCs and temperatures. The system characteristics of pole and zero in the frequency domain are analyzed with the parameters obtained from different conditions. The parameterized model of a Li-ion battery indicates highly dependent of temperatures. To estimate SOC and polarization voltage, a Luenberger state observer is utilized. The P- or PI-gains of observer based on a suitable natural frequency and damping ratio is adopted for the state estimation. Satisfactory estimation accuracy of output voltage and SOC is especially obtained by a PI-gain. The feasibility of the proposed estimation method is verified through experiment under the conditions of different C-rates, SOCs and temperatures.

Modeling and Dynamic Analysis of Electromechanical System in Machine Tools (1$^{st}$ Report) - Gain Tuning of PI Speed Controller - (공장기계 시스템의 모델링과 동적특성 분석 (제1보) - PI 속도 제어기의 제어이득 설정 -)

  • Park, Yong-Hwan;Moon, Hee-Sung;Choe, Song-Yul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.1 s.94
    • /
    • pp.265-271
    • /
    • 1999
  • In the feed drive systems or the spindle systems of machine tools that consist of many mechanical components, a torsional vibration is often generated because of its elastic elements in torque transmission-Generally, the accuracy of motion control system is strongly influenced by the dynamic behavior of coupled transmission components Especially, a torsional vibration caused by the elasticity of mechanical elements might deteriorate the quick movement of system and lead to shorten the life time of the mechanical transmission elements. So, it is necessary to analyze the electromechanical system mathematically to optimize the dynamic characteristics of the feed m1d spindle system. In this paper, based on the DC motor model, a model of electro-drive system with motor has been developed and an optimal criterion for tuning the gain of speed controller is discussed. The frequency bandwidth of the system and the damping ratio in time domain are optimal design specifications for the gain adjustment speed controller. The gains of PI speed controller are then derived from the bandwidth and damping ratio, and those relationships have been classified.

  • PDF

Measurement of Nonlinear Time-variant Source Characteristics of Intake and Exhaust Systems in Fluid Machines

  • Jang Seung-Ho;Ih Jeong-Guon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.24 no.3E
    • /
    • pp.87-89
    • /
    • 2005
  • The acoustical sources of intake and exhaust systems in fluid machines are often characterized by the source impedance and strength using linear frequency-domain modeling. In the case of the sources which are nonlinear and time-variant, however, the source parameters were sometimes incorrectly obtained. In this paper, the source model and direct measurement technique are modified in order to evaluate the effect due to nonlinear and periodically time-varying source character as well as the linear property of the reflectivity of in-duct fluid machine source. With a priori known kinematical information of the source, the types of nonlinear time-variant terms can be presumed by a simple physical model, in which there is practically no restriction on the form of the model. The concept of source impedance can be extendable by introducing the linear frequency response function for each nonlinear or time-variant input. Extending the conventional method and adapting the reverse MISO technique, it is possible to develop a direct method that can deal with the nonlinear time-variant source parameters. The proposed direct method has a novel feature that there is no restriction on the probability or spectral natures of the excited sound pressure data. The present method is verified by the simulated measurements for simplified fluid machines. It is thought that the proposed method would be useful in predicting the insertion loss or the radiated sound level from intake or exhaust systems.

Frequency variation in construction stages and model validation for steel buildings

  • Aras, Fuat
    • Steel and Composite Structures
    • /
    • v.22 no.3
    • /
    • pp.647-662
    • /
    • 2016
  • This study aims to monitor the variation of modal frequencies of steel buildings during their construction sequence. In this respect, construction of a steel building is followed by vibration based measurements. The monitored building is a three-story educational building within a building group whose structural system consists of steel moment resisting steel frames and eccentric braces. Five different acceleration measurements in two perpendicular directions are taken on five different construction stages, starting from the erection of the columns and beams ending with the completion of the construction. The recorded measurements are transferred into frequency domain and the dominant frequencies for each case have been determined. The change in the dominant frequencies is evaluated with the existing construction stages and performed constructional works between the stages. The last measurement, performed on the building in service, revealed the first two dominant frequencies as mutual in X and Y direction, showing that these dynamic modes are torsional modes. This result is investigated by numerical analysis performed with finite element model of the building constructed for design purpose. Lower frequencies and different mode shapes are determined from numerical analysis. The reason of lower frequencies is discussed and the vibration survey is extended to determine the effects of an adjacent building. The results showed that the building is in strong relation with an adjoining building in spite of a designed construction joint.

Design of a Fourth-Order Sigma-Delta Modulator Using Direct Feedback Method (직접 궤환 방식의 모델링을 이용한 4차 시그마-델타 변환기의 설계)

  • Lee, Bum-Ha;Choi, Pyung;Choi, Jun-Rim
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.35C no.6
    • /
    • pp.39-47
    • /
    • 1998
  • A fourth-order $\Sigma$-$\Delta$ modulator is designed and implemented in 0.6 $\mu\textrm{m}$ CMOS technology. The modulator is verified by introducing nonlinear factors such as DC gain and slew rate in system model that determines the transfer function in S-domain and in time-domain. Dynamic range is more than 110 dB and the peak SM is 102.6 dB at a clock rate of 2.8224 MHz for voiceband signal. The structure of a ∑-$\Delta$ modulator is a modified fourth-order ∑-$\Delta$ modulator using direct feedback loop method, which improves performance and consumes less power. The transmission zero for noise is located in the first-second integrator loop, which reduces entire size of capacitors, reduces the active area of the chip, improves the performance, and reduces power dissipation. The system is stable because the output variation with respect to unit time is small compared with that of the third integrator. It is easy to implement because the size of the capacitor in the first integrator, and the size of the third integrator is small because we use the noise reduction technique. This paper represents a new design method by modeling that conceptually decides transfer function in S-domain and in Z-domain, determines the cutoff frequency of signal, maximizes signal power in each integrator, and decides optimal transmission-zero frequency for noise. The active area of the prototype chip is 5.25$\textrm{mm}^2$, and it dissipates 10 mW of power from a 5V supply.

  • PDF

3-D Traveltime and Amplitude Calculation using High-performance Parallel Finite-element Solver (고성능 병렬 유한요소 솔버를 이용한 3차원 주시와 진폭계산)

  • Yang, Dong-Woo;Kim, Jung-Ho
    • Geophysics and Geophysical Exploration
    • /
    • v.7 no.4
    • /
    • pp.234-244
    • /
    • 2004
  • In order to calculate 3-dimensional wavefield using finite-element method in frequency domain, we must factor so huge sparse impedance matrix. Because of difficulties of handling of this huge impedance matrix, 3-dimensional wave equation modeling is conducted mainly in time domain. In this study, we simulate the 3-D wavefield using finite-element method in Laplace domain by combining high-performance parallel finite-element solver and SWEET (Suppressed Wave Equation Estimation of Traveltime) algorithm which can calculate the traveltime and the amplitude. To verify this combination, we applied it to the SEG/EAGE 3D salt model in serial and parallel computing environments.

Three-dimensional Cross-hole EM Modeling using the Extended Born Approximation (확장 Born 근사에 의한 시추공간 3차원 전자탐사 모델링)

  • Lee, Seong-Kon;Kim, Hee-Joon;Suh, Jung-Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.2 no.2
    • /
    • pp.86-95
    • /
    • 1999
  • This paper presents an efficient three-dimensional (3-D) modeling algorithm using the extended approximation to an electric field integral equation. Numerical evaluations of Green's tensor integral are performed in the spatial wavenumber domain. This approach makes it possible to reduce computing time, to handle smoothly varying conductivity model and to remove singularity problems encountered in the integration of Green's tensor at a source point. The responses obtained by 3-D modeling algorithm developed in this study are compared with those by the full integral equation for a thin-sheet EM scattering. The extensive analyses on the performance of modeling algorithm are made with the conductivity contrasts and source frequencies. These results show that the modeling algorithm are accurate up to the conductivity contrast of 1:16 and the frequency range of 100 Hz-100 kHz. The extended Born approximation, however, may produce inaccurate results for some source and model configurations in which the electric field is discontinuous across the conductivity boundary. We performed the modeling of a composite model of which conductivity varies continuously and this shows the modeling algorithm developed in this study is efficient for 3-D EM modeling. For a cross-hole source-receiver configuration a composite model of which conductivity varies continuously can be successfully simulated using this algorithm.

  • PDF

A Study on Consistency of Numerical Solutions for Wave Equation (파동방정식 수치해의 일관성에 관한 연구)

  • Pyun, Sukjoon;Park, Yunhui
    • Geophysics and Geophysical Exploration
    • /
    • v.19 no.3
    • /
    • pp.136-144
    • /
    • 2016
  • Since seismic inversion is based on the wave equation, it is important to calculate the solution of wave equation exactly. In particular, full waveform inversion would produce reliable results only when the forward modeling is accurately performed because it uses full waveform. When we use finite-difference or finite-element method to solve the wave equation, the convergence of numerical scheme should be guaranteed. Although the general proof of convergence is provided theoretically, the consistency and stability of numerical schemes should be verified for practical applications. The implementation of source function is the most crucial factor for the consistency of modeling schemes. While we have to use the sinc function normalized by grid spacing to correctly describe the Dirac delta function in the finite-difference method, we can simply use the value of basis function, regardless of grid spacing, to implement the Dirac delta function in the finite-element method. If we use frequency-domain wave equation, we need to use a conservative criterion to determine both sampling interval and maximum frequency for the source wavelet generation. In addition, the source wavelet should be attenuated before applying it for modeling in order to make it obey damped wave equation in case of using complex angular frequency. With these conditions satisfied, we can develop reliable inversion algorithms.

2.5 Dimensional EM Modeling considering Horizontal Magnetic Dipole Source (수평 자기쌍극자 송신원을 이용한 2.5차원 전자탐사 모델링)

  • Kwon Hyoung-Seok;Song Yoonho;Son Jeong-Sul;Suh Jung-Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.5 no.2
    • /
    • pp.84-92
    • /
    • 2002
  • In this study, the new modeling scheme has been developed for recently designed and tested electromagnetic survey, which adapts horizontal magnetic dipole with $1\;kHz\~1\;MHz$ frequency range as a source. The 2.5-D secondary field formulation in wavenumber domain was constructed using finite element method and verified through comparing results with layered-earth solutions calculated by integral equations. 2-D conductive- and resistive-block models were constructed for calculating electric field, magnetic field and impedance - the ratio of electric and magnetic fields which are orthogonal each other. This study showed that electric field and impedance are superior in identifying 2-D isolated-body model to magnetic field. In particular, impedance gives more stable results than electric field with similar spatial resolving power, because electric field is divided by magnetic field in impedance. Thus the impedance analysis which uses electric and magnetic fields together would give better result in imaging the shallow anomalies than conventional EM method.

A Study on the Underwater Channel Model based on a High-Order Finite Difference Method using GPUs (그래픽 프로세서를 이용한 고차 유한 차분식 기반 수중채널모델 연구)

  • Bae, Ho Seuk;Kim, Won-Ki;Son, Su-Uk;Ha, Wansoo
    • Journal of the Korea Society for Simulation
    • /
    • v.30 no.1
    • /
    • pp.11-20
    • /
    • 2021
  • As unmanned underwater systems have recently emerged, a high-speed underwater channel modeling technique, which is one of the most important techniques in the system, has received a lot of attention. In this paper, we proposed a high-speed sound propagation model and verified the applicability through quantitative performance analyses. We used a high-order finite difference method (FDM) for wave propagation modeling in the water, and a domain decomposition method was adopted using multiple general-purpose graphics processing units (GPUs) to increase the calculation efficiency. We compared the results of the model we proposed with the analytic solution in the half-infinite media and results of the Virtual Timeseries Experiment (VirTEX) model, which is based on the ray method. Finally, we analyzed the performance of the model quantitatively using numerical examples. Through quantitative analyses of the improvement in computational performance, we confirmed that the computational speed increases linearly as the number of GPUs increases. The computation times are increased by 2 times and 8 times, respectively, when the domain size of computation and the maximum frequency are doubled. We expect that the proposed high-speed underwater channel modeling technique is able to contribute to the enhancement of national defense as an underwater communication channel model and analysis tool to develop the underwater communication technique for the unmanned underwater system.